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Disclaimer This notes have been made in preparation for a one hour talk about
principal series representations of GLa(F') in a study group about automorphic rep-
resentations. The content is based on [1] and [2]. They have been made for my own
benefit and they can contain mistakes.

1 Important subgroups of GL,

Notation Let F' be a non-archimedean local field and denote by O and p its ring of
integers and its maximal ideal, respectively. Denote by « the residue field of F' and by
q its cardinality. Also, fix a generator w of p.

We will consider the group G = GLa(F') of non-singular 2-dimensional matricies with
entries in F' and the product of matrices as the operation. The following subgroups of
F will be important (* means any element in F')

e Maximal compact subgroup Ko = GL2(O).

x ok
e Borel subgroup B = { (0 *>}

e Unipotent subgroup N = {(é ;) }

. * 0
e Diagonal torus T' = { (O *> }

Remark 1. B=T x N
Proposition 2. ([1, section 7]) The group G satisfies the following decompositions.

e Bruhat decomposition

where w = <(1) (1)>

e Iwasawa decomposition

G = BUBwN

G = BK)



e Cartan decomposition

a0
G= |_| Ko(% wb>K0

a<beZ

Proposition 3. The group G is unimodular.

Proof. Since the Haar measure of a compact group is left and right invariant, then
dc(k) = 1 for every k contained in any compact subgroup of G, like K. Consider the

matrix
(10
9= 0 w

Note that all the matrices appearing in the Cartan decomposition are of the form
g’wg®w. Since w € Ky, then dg(w) = 1 and we just have to prove that dg(g) = 1.
Consider the Iwahori subgroups

(D ereer) To{(® Derpses)

Since they have the same index in Ky, they also have the same Haar measure. Hence

u(I) = p(I) = plglg™") = dalg)u(l) = dalg) =1

Proposition 4. The modulus character of B is given by
(o b, 1

Proof. Since every element of N is contained in an open compact subgroup, then
dp(n) =1Vn € N.

a b

Consider the matrix g from the proof of proposition [3| and let h = ( 0 d

)EBQK@.

a wb

Since g~ 'hg = <0 d ), g~ !Bg has index ¢ in B. Thus 65(g) = ¢~ !.

Since the modulus character is trivial in N and in the centre of B, we deduce that

[ 9]¢



2 Representations of GG

The goal of this talk is to clasify (some of) the irreducible representations of G. Those
we will classify are the principal series representations, i.e., those that arise as a sub-
representation of an induced one from B.

Definition 5. Let V be a representation of G and let 6 be a character of N. We

denote
Vv

Vo = =g ne N

When 6 is the trivial character, the quotient

V

Vv = (N -1V

is called the Jaquet module of V.

Proposition 6. (|1, section 8.1, lemma]) The functor V' — Vi is exact and additive.
Furthermore, some v € V belongs to the kernel of this map if and only if there is a
compact subset Ny C N such that

/ nvduy =0
No

Definition 7. A representation of G is called supercuspidal if Viy # 0.

The goal of this talk is to provide a classification theorem for the representations of G
that are not supercusptidal. They are also called principal series representations.

Theorem 8. An irreducible, smooth representation V' of G is not supercuspidal if and
only if it is isomorphic to a G-subspace of Indg X, for some character y of 7.

Proof. Assume that V is isomorphic to a G-subspace of Ind%(x). Then
Homp(Vy, x) = Homp(V, x) = Homg(V, Ind% x) # 0

where the first isomorphism comes from the fact that x is trivial of N (as a repre-
sentation of B), so any B-homomorphism V — x factors through Viy. The second
isomorphism is due to Frobenius reciprocity.

The last group of homomorphism is not zero because V' C Indg x- Indeed, by Schur’s
lemma

C = Homg(V, V) € Homg(V, Ind$ ) (1)
In particular, we get that Viy # 0, so V' is supercuspidal.

Conversely, assume that Viy # 0 and choose some v € V' \ {0}. Since V' is irreducible,
then V = Gu. Let K C Ky be a compact open subgroup fixing v. Since K has finite
index in Ky, then Kgv is finitely generated. Since G = BKj, then Kgv generates V as
a B-representation and thus its image generate V over T

Therefore, Vi is finitely generated over T'. Choose a minimal generating set {u1, ..., u;}.
By Zorn’s lemma, Vy has a maximal T-subspace U containing uy, ..., u;—1 such that
ut ¢ U. Then x = Vy /U is an irreducible representation of 7', hence a character.



Consider the surjection
Homg (V, Ind§ x) = Homy(Vy, x) — Homy(x, x) = C

Hence Homg(V,Ind% x) # 0 and, since V is an irreducible G-representation, then V'
is isomorphic to a subspace of Indg X- ]

3 Irreducibility of Ind$

By theorem [8, we are interested in studying the G-subspaces of Indg X, where x is a
character of T. Turns out that this representations are in most cases irreducible.

Theorem 9. Let y = x1 ® x2 be a character of T" and set X = Indg x- Then
1. X is reducible if and only if x1x5 is either the trivial character or x +— |z|2.
2. When X is reducible, it satisfies the following
(a) The G-composition length of X is 2.

(b) One composition factor of X has dimension 1 and the other is infinite di-
mensional.

(c) X has a l-dimensional subspace when x1x,' = 1 and a l-dimensional
quotient when x1x5 ' (2) = |z|2.

The goal of this section will be to present a proof of theorem [9] However, the first step
is to study X as a B representation. In order to do that, its Jaquet module has an
expclicit structure due to the following lemma.

Lemma 10. (Restriction-Induction) Let U be a (non-necessarily irreducible) smooth
representation of T and let X := Indg U. There is a short exact sequence of represen-
tations of T'

0—=U"®d5" Xy U 0
where dp is the modular character of B and UY is the conjugate representation U in
which b € B acts by the action of wbw™! on U.
Proof. There is a surjective B-map X — U given by f — f(1). Call V the kernel of

this map, so there is an exact sequence of representations of B

0 |4 X U 0

By proposition [6] the following is also exact

0 Vi XN U 0

To complete the proof, we need to show that Vy = U% ® (5];1.
Note that f € V if and only if f(b) = 0Vb € B. Since G = BUBwN, this is equivalent

1
to supp(f) C BwN. For every x € F, consider the matrix g, = O). When |z| is

1
small enough, the smoothness of f implies that f(g,) = 0. Considering the identity

_ 1 gz~ —z71 0 1 27! cB 1 27!
9= =\o 1 o 2/%\o 1 Yo 1
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we see that supp(f) C BwNy, for some open compact Ny C N.
For every f € V', define a function
fn: T —U, :cv—>/ f(zwn) dn
N

By the definition of the modular character and the left invariance of the Haas measure,
(tf)n(z) = / flzwnt)dn = (551(75) / f(xt“wn) dn = 5gl(t)(t“’fN)(x)
N N

Hence we have a B-homomorphism
V=05 @UY: f fn(l)
which induces an isomorphism Vy = 5151 ® U™ by proposition @ ]

Proposition 11. As a B-representation, Indg x has composition length 3. Two com-
position factors have dimension one, so the third one is infinite dimensional.

Proof. By lemma there is an exact sequence of B-representations
0—>V—>Ind%x—>@—>0

where Vi = 5;1 x". In particular, Viy is one dimensional. Denote by V' (V) the kernel
of the map V' — V. We have an exact sequence

0—— V(N) 1% Vn 0

Hence we just need to prove that V(N) is irreducible.
Claim: For all § € N , Vp is one dimensional.

We have already proven the claim for the trivial character 1y, since Vi is isomprhic
to the character (%lxw.

To extend this result for other characters 6, note that f € X belongs to V' if and only
if its support is contained in BwN. Hence there is an N-equivariant isomorphism from

U: V—=C>P(N), f= (n— f(wn))
In this new setting, we have an isomorphism
CE(N)Ny = CZ(N)g, [f(n) = 0(n)f(n)
Hence Vjy is one dimensional.

Now we can prove that V(N) is irreducible as a B-representation. Let W be a non-zero
subrepresentation. Since N is abelian, all its irreducible representations are characters.
Hence there is some non-trivial character 6 such that Wy # 0. Given a different non-
trivial character ¢’, there is some x € F such that €'(y) = 6(zy) for every y € F.

Denoting by
z 0
= (01)

Then the action of m, induces an isomorphism Wy — Wy, since my, € B and W is
a B-representation. Hence Wy # 0. Hence (V/W)g = 0 for all characters of N, so
w=V. O



We will now study Indg X as a G-representation.
Proposition 12. Let y = x1 ® x2 be a character of T. Then X = Indg X contians a

(unique) one-dimensional G-subspace if and only if x; = x2.

Proof. Assume f spans a G-stable subspace. Then f ¢ V since supp(f) has to be
right G-invariant and it cannot be contained in BwNy for some compact Nyg C N, as
it happens with all the functions in V' (see the proof of lemma .

The canonical N-map X — C = X/V identifies the N-space Cf. Hence nf = f Vn €
N. Take x € F' and consider the identity

o) =) D)

1
Since f is locally constant, then f is fixed under right tranlsation by <:c_1 (1)> when

|z| is sufficiently large. Since f is also fixed by N, we have

Fw) = xa(=1)x1 x2(2) f(1)
for all z € F* of sufficiently large absolute value. Thus x1 = xo.

Conversely, assume that x1 = x2. Then, as a B-representation, then
x(b) = x1(detb) Vb € B

Thus
X = x1(det g) Ind5(Cp) (2)

where Cp is the trivial B-representation. The function

f: G—=C: g xi(detg)
generates an invariant subspace. O
Proof of theorem[9 Assume X is reducible. By proposition X contains a finite
dimensional subspace or a finite dimensional quotient.

Assume the first alternative. Since V does not contain any finite dimensional G-
subspace, X contains a one dimensionsal G-subspace L satisfying that L NV = 0.
Thus we are in the case when x1 = xo.

The quotient X /L is thus isomporphic to V, which has B-composition length 2 and
a unique one dimensional quotient Viy 2 (x; o det)5§1. If it was a G quotient, then
G would act on Vy by a ¢ o det, where ¢ is a character of F*. Indeed, since the
commutator subgroup of GLa(F') is SLa(F'), then all characters of G are of this form.
Hovever, this is not possible by proposition

In the case when X has a finite dimensional quotient, then XV has a one dimensional
subspace. By the duality theorem,

XY =Ind$ o5yt

Hence we are in the situation where x1x5 ' (2) = |z/. O



4 Steinberg representation and final classification of non-
cuspidal representations.

Definition 13. Let x1,x2 : F* — C* be two smooth characters and denote by

X = X1 ® X2 the corresponding character of T'. Consider the representation
—1/2
I(x1,x2) = nd§ (05" @ x)

Explicitly, this representation is described as

I x2) = {f .G — C locally constant : f [(0 Z) g} - \/Em(a)m(d)f(g)}

By the duality theorem, we have the following result
Proposition 14.
I0) = T(xa,x2) = 1(xxa )

Definition 15. The Steinberg representation of G, denoted by Stg is defined by the
exact sequence

0 —> Cqg — Ind%(Cp) — Stg ——=0

where Cg and Cp denote the trivial representations of G and B, respectively.

Before proving the self-duality of the Steinberg representation, consider the folllowing
lemma.

Lemma 16. Let y and £ be characters of T. Then the space Homg(Indg X,Indg €)
has dimension 1 if £ = x or x = chs;.
Proof. By Frobenius reciprocity,
Homg (Ind$ x, IndZ €) = Homr((Ind% x) v, €)
By lemma the Jaquet module fits as a T-representation into the exact sequence
0 —x"“d5" — (Ind§ x)y —>x —0

If x # X“’(Sgl, the above exact sequence splits and the lemma is clear. When y = X“’dgl

then Indg x is irreducible and the lemma follows by Schur’s lemma. O
Proposition 17. The Steinberg representation is self-dual.

Proof. Consider the exact sequence
OHCGHIndg(CBHStgﬂO

Dualising it,

0 StY, Ind 65" — Cg —=0
By lemma [I6, we have that
Hom(Ind§ Cp,Ind% 65") = C

Since those representations are not isomorphic, any non-zero homomorphism induces
an isomorphism Stg 2 St/ O



Considering all the above, the final classification theorem follows.

Theorem 18. The isomorphism classes of irreducible, non-cuspidal representations of

G are
o I(x1,x2), where x1x5 ' # ||*".

e The one dimensional representations ¢ o det, where ¢ ranges over the characters
of F*.

e The special representations (¢ o det) Stg, where ¢ ranges over the characters of
F*.

The classes in this list are all distinct except I(x1, x2) = I(x2,x1) in the first case.
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