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Disclaimer This notes have been made in preparation for a one hour talk about
principal series representations of GL2(F ) in a study group about automorphic rep-
resentations. The content is based on [1] and [2]. They have been made for my own
benefit and they can contain mistakes.

1 Important subgroups of GL2

Notation Let F be a non-archimedean local field and denote by O and p its ring of
integers and its maximal ideal, respectively. Denote by κ the residue field of F and by
q its cardinality. Also, fix a generator $ of p.

We will consider the group G = GL2(F ) of non-singular 2-dimensional matricies with
entries in F and the product of matrices as the operation. The following subgroups of
F will be important (∗ means any element in F )

• Maximal compact subgroup K0 = GL2(O).

• Borel subgroup B =

{(
∗ ∗
0 ∗

)}
• Unipotent subgroup N =

{(
1 ∗
0 1

)}
• Diagonal torus T =

{(
∗ 0
0 ∗

)}
Remark 1. B = T nN

Proposition 2. ([1, section 7]) The group G satisfies the following decompositions.

• Bruhat decomposition
G = B ∪BwN

where w :=

(
0 1
1 0

)
.

• Iwasawa decomposition
G = BK0
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• Cartan decomposition

G =
⊔

a≤b∈Z
K0

(
$a 0
0 $b

)
K0

Proposition 3. The group G is unimodular.

Proof. Since the Haar measure of a compact group is left and right invariant, then
δG(k) = 1 for every k contained in any compact subgroup of G, like K0. Consider the
matrix

g =

(
1 0
0 $

)
Note that all the matrices appearing in the Cartan decomposition are of the form
gbwgaw. Since w ∈ K0, then δG(w) = 1 and we just have to prove that δG(g) = 1.
Consider the Iwahori subgroups

I =

{(
a b
c d

)
∈ K0 : c ∈ p

}
, I =

{(
a b
c d

)
∈ K0 : b ∈ p

}
Since they have the same index in K0, they also have the same Haar measure. Hence

µ(I) = µ(I) = µ(gIg−1) = δG(g)µ(I)⇒ δG(g) = 1

Proposition 4. The modulus character of B is given by

δB :

(
a b
0 d

)
7→ |d|
|a|

Proof. Since every element of N is contained in an open compact subgroup, then
δB(n) = 1 ∀n ∈ N .

Consider the matrix g from the proof of proposition 3 and let h =

(
a b
0 d

)
∈ B ∩K0.

Since g−1hg =

(
a $b
0 d

)
, g−1Bg has index q in B. Thus δB(g) = q−1.

Since the modulus character is trivial in N and in the centre of B, we deduce that

δB

[(
a b
0 d

)]
=
|d|
|a|
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2 Representations of G

The goal of this talk is to clasify (some of) the irreducible representations of G. Those
we will classify are the principal series representations, i.e., those that arise as a sub-
representation of an induced one from B.

Definition 5. Let V be a representation of G and let θ be a character of N . We
denote

Vθ :=
V

〈(n− θ(n))v : n ∈ N〉

When θ is the trivial character, the quotient

VN :=
V

(N − 1)V

is called the Jaquet module of V .

Proposition 6. ([1, section 8.1, lemma]) The functor V → VN is exact and additive.
Furthermore, some v ∈ V belongs to the kernel of this map if and only if there is a
compact subset N0 ⊂ N such that ∫

N0

nv dµN = 0

Definition 7. A representation of G is called supercuspidal if VN 6= 0.

The goal of this talk is to provide a classification theorem for the representations of G
that are not supercusptidal. They are also called principal series representations.

Theorem 8. An irreducible, smooth representation V of G is not supercuspidal if and
only if it is isomorphic to a G-subspace of IndGB χ, for some character χ of T .

Proof. Assume that V is isomorphic to a G-subspace of IndGB(χ). Then

HomT (VN , χ) ∼= HomB(V, χ) ∼= HomG(V, IndGB χ) 6= 0

where the first isomorphism comes from the fact that χ is trivial of N (as a repre-
sentation of B), so any B-homomorphism V → χ factors through VN . The second
isomorphism is due to Frobenius reciprocity.

The last group of homomorphism is not zero because V ⊂ IndGB χ. Indeed, by Schur’s
lemma

C ∼= HomG(V, V ) ⊂ HomG(V, IndGB χ) (1)

In particular, we get that VN 6= 0, so V is supercuspidal.

Conversely, assume that VN 6= 0 and choose some v ∈ V \ {0}. Since V is irreducible,
then V = Gv. Let K ⊂ K0 be a compact open subgroup fixing v. Since K has finite
index in K0, then K0v is finitely generated. Since G = BK0, then K0v generates V as
a B-representation and thus its image generate VN over T .

Therefore, VN is finitely generated over T . Choose a minimal generating set {u1, . . . , ut}.
By Zorn’s lemma, VN has a maximal T -subspace U containing u1, . . . , ut−1 such that
ut /∈ U . Then χ = VN/U is an irreducible representation of T , hence a character.
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Consider the surjection

HomG(V, IndGB χ) ∼= HomT (VN , χ) � HomT (χ, χ) ∼= C

Hence HomG(V, IndGB χ) 6= 0 and, since V is an irreducible G-representation, then V
is isomorphic to a subspace of IndGB χ.

3 Irreducibility of IndGB χ

By theorem 8, we are interested in studying the G-subspaces of IndGB χ, where χ is a
character of T . Turns out that this representations are in most cases irreducible.

Theorem 9. Let χ = χ1 ⊗ χ2 be a character of T and set X = IndGB χ. Then

1. X is reducible if and only if χ1χ
−1
2 is either the trivial character or x 7→ |x|2.

2. When X is reducible, it satisfies the following

(a) The G-composition length of X is 2.

(b) One composition factor of X has dimension 1 and the other is infinite di-
mensional.

(c) X has a 1-dimensional subspace when χ1χ
−1
2 = 1 and a 1-dimensional

quotient when χ1χ
−1
2 (x) = |x|2.

The goal of this section will be to present a proof of theorem 9. However, the first step
is to study X as a B representation. In order to do that, its Jaquet module has an
expclicit structure due to the following lemma.

Lemma 10. (Restriction-Induction) Let U be a (non-necessarily irreducible) smooth
representation of T and let X := IndGB U . There is a short exact sequence of represen-
tations of T

0 // Uw ⊗ δ−1B // XN
// U // 0

where δB is the modular character of B and Uw is the conjugate representation U in
which b ∈ B acts by the action of wbw−1 on U .

Proof. There is a surjective B-map X → U given by f 7→ f(1). Call V the kernel of
this map, so there is an exact sequence of representations of B

0 // V // X // U // 0

By proposition 6, the following is also exact

0 // VN // XN
// U // 0

To complete the proof, we need to show that VN = Uw ⊗ δ−1B .

Note that f ∈ V if and only if f(b) = 0 ∀b ∈ B. Since G = B∪BwN , this is equivalent

to supp(f) ⊂ BwN . For every x ∈ F , consider the matrix gx =

(
1 0
x 1

)
. When |x| is

small enough, the smoothness of f implies that f(gx) = 0. Considering the identity

gx =

(
1 x−1

0 1

)(
−x−1 0

0 x

)
w

(
1 x−1

0 1

)
∈ Bw

(
1 x−1

0 1

)
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we see that supp(f) ⊂ BwN0, for some open compact N0 ⊂ N .

For every f ∈ V , define a function

fN : T → U, x 7→
∫
N
f(xwn) dn

By the definition of the modular character and the left invariance of the Haas measure,

(tf)N (x) =

∫
N
f(xwnt) dn = δ−1B (t)

∫
N
f(xtwwn) dn = δ−1B (t)(twfN )(x)

Hence we have a B-homomorphism

V → δ−1B ⊗ U
w : f 7→ fN (1)

which induces an isomorphism VN ∼= δ−1B ⊗ Uw by proposition 6.

Proposition 11. As a B-representation, IndGB χ has composition length 3. Two com-
position factors have dimension one, so the third one is infinite dimensional.

Proof. By lemma 10, there is an exact sequence of B-representations

0 // V // IndGB χ
// C // 0

where VN ∼= δ−1B χw. In particular, VN is one dimensional. Denote by V (N) the kernel
of the map V → VN . We have an exact sequence

0 // V (N) // V // VN // 0

Hence we just need to prove that V (N) is irreducible.

Claim: For all θ ∈ N̂ , Vθ is one dimensional.

We have already proven the claim for the trivial character 1N , since VN is isomprhic
to the character δ−1B χw.

To extend this result for other characters θ, note that f ∈ X belongs to V if and only
if its support is contained in BwN . Hence there is an N -equivariant isomorphism from

Ψ : V → C∞c (N), f 7→ (n 7→ f(wn))

In this new setting, we have an isomorphism

C∞c (N)N → C∞c (N)θ, f(n) 7→ θ(n)f(n)

Hence Vθ is one dimensional.

Now we can prove that V (N) is irreducible as a B-representation. Let W be a non-zero
subrepresentation. Since N is abelian, all its irreducible representations are characters.
Hence there is some non-trivial character θ such that Wθ 6= 0. Given a different non-
trivial character θ′, there is some x ∈ F such that θ′(y) = θ(xy) for every y ∈ F .
Denoting by

mx =

(
x 0
0 1

)
Then the action of mx induces an isomorphism Wθ → Wθ′ , since my ∈ B and W is
a B-representation. Hence W ′θ 6= 0. Hence (V/W )θ = 0 for all characters of N , so
W = V .
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We will now study IndGB χ as a G-representation.

Proposition 12. Let χ = χ1 ⊗ χ2 be a character of T . Then X = IndGB χ contians a
(unique) one-dimensional G-subspace if and only if χ1 = χ2.

Proof. Assume f spans a G-stable subspace. Then f 6∈ V since supp(f) has to be
right G-invariant and it cannot be contained in BwN0 for some compact N0 ⊂ N , as
it happens with all the functions in V (see the proof of lemma 10).

The canonical N -map X → C ∼= X/V identifies the N -space Cf . Hence nf = f ∀n ∈
N . Take x ∈ F and consider the identity

w

(
1 x
0 1

)
=

(
1 x−1

0 1

)(
−x−1 0

0 x

)(
1 0
x−1 1

)

Since f is locally constant, then f is fixed under right tranlsation by

(
1 0
x−1 1

)
when

|x| is sufficiently large. Since f is also fixed by N , we have

f(w) = χ1(−1)χ−11 χ2(x)f(1)

for all x ∈ F ∗ of sufficiently large absolute value. Thus χ1 = χ2.

Conversely, assume that χ1 = χ2. Then, as a B-representation, then

χ(b) = χ1(det b) ∀b ∈ B

Thus
X = χ1(det g) IndGB(CB) (2)

where CB is the trivial B-representation. The function

f : G→ C : g 7→ χ1(det g)

generates an invariant subspace.

Proof of theorem 9. Assume X is reducible. By proposition 11, X contains a finite
dimensional subspace or a finite dimensional quotient.

Assume the first alternative. Since V does not contain any finite dimensional G-
subspace, X contains a one dimensionsal G-subspace L satisfying that L ∩ V = 0.
Thus we are in the case when χ1 = χ2.

The quotient X/L is thus isomporphic to V , which has B-composition length 2 and
a unique one dimensional quotient VN ∼= (χ1 ◦ det)δ−1B . If it was a G quotient, then
G would act on VN by a φ ◦ det, where φ is a character of F ∗. Indeed, since the
commutator subgroup of GL2(F ) is SL2(F ), then all characters of G are of this form.
Hovever, this is not possible by proposition 4.

In the case when X has a finite dimensional quotient, then X∨ has a one dimensional
subspace. By the duality theorem,

X∨ = IndGB δ
−1
B χ−1

Hence we are in the situation where χ1χ
−1
2 (x) = |x|2.
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4 Steinberg representation and final classification of non-
cuspidal representations.

Definition 13. Let χ1, χ2 : F ∗ → C∗ be two smooth characters and denote by
χ = χ1 ⊗ χ2 the corresponding character of T . Consider the representation

I(χ1, χ2) = IndGB(δ
−1/2
B ⊗ χ)

Explicitly, this representation is described as

I(χ1, χ2) =

{
f : G→ C locally constant : f

[(
a b
0 d

)
g

]
=

√
|a|
|d|
χ1(a)χ2(d)f(g)

}

By the duality theorem, we have the following result

Proposition 14.
I(χ) = I(χ1, χ2)

∨ ∼= I(χ−11 , χ−12 )

Definition 15. The Steinberg representation of G, denoted by StG is defined by the
exact sequence

0 // CG // IndGB(CB) // StG // 0

where CG and CB denote the trivial representations of G and B, respectively.

Before proving the self-duality of the Steinberg representation, consider the folllowing
lemma.

Lemma 16. Let χ and ξ be characters of T . Then the space HomG(IndGB χ, IndBG ξ)
has dimension 1 if ξ = χ or χ = χwδ−1B .

Proof. By Frobenius reciprocity,

HomG(IndGB χ, IndBG ξ)
∼= HomT ((IndGB χ)N , ξ)

By lemma 10, the Jaquet module fits as a T -representation into the exact sequence

0 // χwδ−1B
// (IndGB χ)N // χ // 0

If χ 6= χwδ−1B , the above exact sequence splits and the lemma is clear. When χ = χwδ−1B
then IndGB χ is irreducible and the lemma follows by Schur’s lemma.

Proposition 17. The Steinberg representation is self-dual.

Proof. Consider the exact sequence

0 // CG // IndGB CB // StG // 0

Dualising it,

0 // St∨G
// IndGB δ

−1
B

// CG // 0

By lemma 16, we have that

Hom(IndGB CB, IndGB δ
−1
B ) ∼= C

Since those representations are not isomorphic, any non-zero homomorphism induces
an isomorphism StG ∼= St∨G.
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Considering all the above, the final classification theorem follows.

Theorem 18. The isomorphism classes of irreducible, non-cuspidal representations of
G are

• I(χ1, χ2), where χ1χ
−1
2 6= |·|±1.

• The one dimensional representations φ ◦ det, where φ ranges over the characters
of F ∗.

• The special representations (φ ◦ det) StG, where φ ranges over the characters of
F ∗.

The classes in this list are all distinct except I(χ1, χ2) ∼= I(χ2, χ1) in the first case.
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