Principal series representations of $GL_2(F)$

Alberto Angurel Andres

November 13, 2024

Disclaimer This notes have been made in preparation for a one hour talk about principal series representations of $GL_2(F)$ in a study group about automorphic representations. The content is based on [1] and [2]. They have been made for my own benefit and they can contain mistakes.

1 Important subgroups of GL_2

Notation Let F be a non-archimedean local field and denote by \mathcal{O} and \mathfrak{p} its ring of integers and its maximal ideal, respectively. Denote by κ the residue field of F and by q its cardinality. Also, fix a generator ϖ of \mathfrak{p} .

We will consider the group $G = \operatorname{GL}_2(F)$ of non-singular 2-dimensional matrices with entries in F and the product of matrices as the operation. The following subgroups of F will be important (* means any element in F)

- Maximal compact subgroup $K_0 = \operatorname{GL}_2(\mathcal{O})$.
- Borel subgroup $B = \left\{ \begin{pmatrix} * & * \\ 0 & * \end{pmatrix} \right\}$

• Unipotent subgroup
$$N = \left\{ \begin{pmatrix} 1 & * \\ 0 & 1 \end{pmatrix} \right\}$$

• Diagonal torus
$$T = \left\{ \begin{pmatrix} * & 0 \\ 0 & * \end{pmatrix} \right\}$$

Remark 1. $B = T \ltimes N$

Proposition 2. ([1, section 7]) The group G satisfies the following decompositions.

• Bruhat decomposition

$$G = B \cup BwN$$

where
$$w := \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
.

• Iwasawa decomposition

 $G = BK_0$

• Cartan decomposition

$$G = \bigsqcup_{a \le b \in \mathbb{Z}} K_0 \begin{pmatrix} \varpi^a & 0\\ 0 & \varpi^b \end{pmatrix} K_0$$

Proposition 3. The group G is unimodular.

Proof. Since the Haar measure of a compact group is left and right invariant, then $\delta_G(k) = 1$ for every k contained in any compact subgroup of G, like K_0 . Consider the matrix

$$g = \begin{pmatrix} 1 & 0 \\ 0 & \varpi \end{pmatrix}$$

Note that all the matrices appearing in the Cartan decomposition are of the form $g^b w g^a w$. Since $w \in K_0$, then $\delta_G(w) = 1$ and we just have to prove that $\delta_G(g) = 1$. Consider the Iwahori subgroups

$$I = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in K_0 : c \in \mathfrak{p} \right\}, \quad \overline{I} = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in K_0 : b \in \mathfrak{p} \right\}$$

Since they have the same index in K_0 , they also have the same Haar measure. Hence

$$\mu(I) = \mu(\overline{I}) = \mu(gIg^{-1}) = \delta_G(g)\mu(I) \Rightarrow \delta_G(g) = 1$$

Proposition 4. The modulus character of B is given by

$$\delta_B: \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \mapsto \frac{|d|}{|a|}$$

Proof. Since every element of N is contained in an open compact subgroup, then $\delta_B(n) = 1 \ \forall n \in N.$

Consider the matrix g from the proof of proposition 3 and let $h = \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \in B \cap K_0$. Since $g^{-1}hg = \begin{pmatrix} a & \varpi b \\ 0 & d \end{pmatrix}$, $g^{-1}Bg$ has index q in B. Thus $\delta_B(g) = q^{-1}$.

Since the modulus character is trivial in N and in the centre of B, we deduce that

$$\delta_B \left[\begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \right] = \frac{|d|}{|a|}$$

2 Representations of G

The goal of this talk is to clasify (some of) the irreducible representations of G. Those we will classify are the principal series representations, i.e., those that arise as a sub-representation of an induced one from B.

Definition 5. Let V be a representation of G and let θ be a character of N. We denote

$$V_{\theta} := \frac{V}{\langle (n - \theta(n))v : n \in N \rangle}$$

When θ is the trivial character, the quotient

$$V_N := \frac{V}{(N-1)V}$$

is called the Jaquet module of V.

Proposition 6. ([1, section 8.1, lemma]) The functor $V \to V_N$ is exact and additive. Furthermore, some $v \in V$ belongs to the kernel of this map if and only if there is a compact subset $N_0 \subset N$ such that

$$\int_{N_0} nv \, d\mu_N = 0$$

Definition 7. A representation of G is called *supercuspidal* if $V_N \neq 0$.

The goal of this talk is to provide a classification theorem for the representations of G that are not supercusptidal. They are also called *principal series representations*.

Theorem 8. An irreducible, smooth representation V of G is not supercuspidal if and only if it is isomorphic to a G-subspace of $\operatorname{Ind}_B^G \chi$, for some character χ of T.

Proof. Assume that V is isomorphic to a G-subspace of $\operatorname{Ind}_B^G(\chi)$. Then

$$\operatorname{Hom}_T(V_N,\chi) \cong \operatorname{Hom}_B(V,\chi) \cong \operatorname{Hom}_G(V,\operatorname{Ind}_B^G\chi) \neq 0$$

where the first isomorphism comes from the fact that χ is trivial of N (as a representation of B), so any B-homomorphism $V \to \chi$ factors through V_N . The second isomorphism is due to Frobenius reciprocity.

The last group of homomorphism is not zero because $V \subset \operatorname{Ind}_B^G \chi$. Indeed, by Schur's lemma

$$\mathbb{C} \cong \operatorname{Hom}_{G}(V, V) \subset \operatorname{Hom}_{G}(V, \operatorname{Ind}_{B}^{G} \chi)$$
(1)

In particular, we get that $V_N \neq 0$, so V is supercuspidal.

Conversely, assume that $V_N \neq 0$ and choose some $v \in V \setminus \{0\}$. Since V is irreducible, then V = Gv. Let $K \subset K_0$ be a compact open subgroup fixing v. Since K has finite index in K_0 , then K_0v is finitely generated. Since $G = BK_0$, then K_0v generates V as a B-representation and thus its image generate V_N over T.

Therefore, V_N is finitely generated over T. Choose a minimal generating set $\{u_1, \ldots, u_t\}$. By Zorn's lemma, V_N has a maximal T-subspace U containing u_1, \ldots, u_{t-1} such that $u_t \notin U$. Then $\chi = V_N/U$ is an irreducible representation of T, hence a character. Consider the surjection

$$\operatorname{Hom}_G(V, \operatorname{Ind}_B^G \chi) \cong \operatorname{Hom}_T(V_N, \chi) \twoheadrightarrow \operatorname{Hom}_T(\chi, \chi) \cong \mathbb{C}$$

Hence $\operatorname{Hom}_G(V, \operatorname{Ind}_B^G \chi) \neq 0$ and, since V is an irreducible G-representation, then V is isomorphic to a subspace of $\operatorname{Ind}_B^G \chi$.

3 Irreducibility of $\operatorname{Ind}_B^G \chi$

By theorem 8, we are interested in studying the *G*-subspaces of $\operatorname{Ind}_B^G \chi$, where χ is a character of *T*. Turns out that this representations are in most cases irreducible.

Theorem 9. Let $\chi = \chi_1 \otimes \chi_2$ be a character of T and set $X = \operatorname{Ind}_B^G \chi$. Then

- 1. X is reducible if and only if $\chi_1 \chi_2^{-1}$ is either the trivial character or $x \mapsto |x|^2$.
- 2. When X is reducible, it satisfies the following
 - (a) The G-composition length of X is 2.
 - (b) One composition factor of X has dimension 1 and the other is infinite dimensional.
 - (c) X has a 1-dimensional subspace when $\chi_1\chi_2^{-1} = 1$ and a 1-dimensional quotient when $\chi_1\chi_2^{-1}(x) = |x|^2$.

The goal of this section will be to present a proof of theorem 9. However, the first step is to study X as a B representation. In order to do that, its Jaquet module has an expelicit structure due to the following lemma.

Lemma 10. (Restriction-Induction) Let U be a (non-necessarily irreducible) smooth representation of T and let $X := \operatorname{Ind}_B^G U$. There is a short exact sequence of representations of T

$$0 \longrightarrow U^w \otimes \delta_B^{-1} \longrightarrow X_N \longrightarrow U \longrightarrow 0$$

where δ_B is the modular character of B and U^w is the conjugate representation U in which $b \in B$ acts by the action of wbw^{-1} on U.

Proof. There is a surjective B-map $X \to U$ given by $f \mapsto f(1)$. Call V the kernel of this map, so there is an exact sequence of representations of B

 $0 \longrightarrow V \longrightarrow X \longrightarrow U \longrightarrow 0$

By proposition 6, the following is also exact

 $0 \longrightarrow V_N \longrightarrow X_N \longrightarrow U \longrightarrow 0$

To complete the proof, we need to show that $V_N = U^w \otimes \delta_B^{-1}$.

Note that $f \in V$ if and only if $f(b) = 0 \ \forall b \in B$. Since $G = B \cup BwN$, this is equivalent to $\operatorname{supp}(f) \subset BwN$. For every $x \in F$, consider the matrix $g_x = \begin{pmatrix} 1 & 0 \\ x & 1 \end{pmatrix}$. When |x| is small enough, the smoothness of f implies that $f(g_x) = 0$. Considering the identity

$$g_x = \begin{pmatrix} 1 & x^{-1} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} -x^{-1} & 0 \\ 0 & x \end{pmatrix} w \begin{pmatrix} 1 & x^{-1} \\ 0 & 1 \end{pmatrix} \in Bw \begin{pmatrix} 1 & x^{-1} \\ 0 & 1 \end{pmatrix}$$

we see that $\operatorname{supp}(f) \subset BwN_0$, for some open compact $N_0 \subset N$.

For every $f \in V$, define a function

$$f_N: T \to U, x \mapsto \int_N f(xwn) dn$$

By the definition of the modular character and the left invariance of the Haas measure,

$$(tf)_N(x) = \int_N f(xwnt) \, dn = \delta_B^{-1}(t) \int_N f(xt^w wn) \, dn = \delta_B^{-1}(t)(t^w f_N)(x)$$

Hence we have a B-homomorphism

$$V \to \delta_B^{-1} \otimes U^w : f \mapsto f_N(1)$$

which induces an isomorphism $V_N \cong \delta_B^{-1} \otimes U^w$ by proposition 6.

Proposition 11. As a *B*-representation, $\operatorname{Ind}_B^G \chi$ has composition length 3. Two composition factors have dimension one, so the third one is infinite dimensional.

Proof. By lemma 10, there is an exact sequence of *B*-representations

 $0 \longrightarrow V \longrightarrow \operatorname{Ind}_B^G \chi \longrightarrow \mathbb{C} \longrightarrow 0$

where $V_N \cong \delta_B^{-1} \chi^w$. In particular, V_N is one dimensional. Denote by V(N) the kernel of the map $V \to V_N$. We have an exact sequence

$$0 \longrightarrow V(N) \longrightarrow V \longrightarrow V_N \longrightarrow 0$$

Hence we just need to prove that V(N) is irreducible.

Claim: For all $\theta \in \hat{N}$, V_{θ} is one dimensional.

We have already proven the claim for the trivial character 1_N , since V_N is isomprinc to the character $\delta_B^{-1} \chi^w$.

To extend this result for other characters θ , note that $f \in X$ belongs to V if and only if its support is contained in BwN. Hence there is an N-equivariant isomorphism from

 $\Psi: V \to C^{\infty}_{c}(N), \ f \mapsto (n \mapsto f(wn))$

In this new setting, we have an isomorphism

$$C_c^{\infty}(N)_N \to C_c^{\infty}(N)_{\theta}, \ f(n) \mapsto \theta(n) f(n)$$

Hence V_{θ} is one dimensional.

Now we can prove that V(N) is irreducible as a *B*-representation. Let *W* be a non-zero subrepresentation. Since *N* is abelian, all its irreducible representations are characters. Hence there is some non-trivial character θ such that $W_{\theta} \neq 0$. Given a different non-trivial character θ' , there is some $x \in F$ such that $\theta'(y) = \theta(xy)$ for every $y \in F$. Denoting by

$$m_x = \begin{pmatrix} x & 0\\ 0 & 1 \end{pmatrix}$$

Then the action of m_x induces an isomorphism $W_{\theta} \to W_{\theta'}$, since $m_y \in B$ and W is a *B*-representation. Hence $W'_{\theta} \neq 0$. Hence $(V/W)_{\theta} = 0$ for all characters of N, so W = V.

We will now study $\operatorname{Ind}_B^G \chi$ as a *G*-representation.

Proposition 12. Let $\chi = \chi_1 \otimes \chi_2$ be a character of *T*. Then $X = \text{Ind}_B^G \chi$ contians a (unique) one-dimensional *G*-subspace if and only if $\chi_1 = \chi_2$.

Proof. Assume f spans a G-stable subspace. Then $f \notin V$ since $\operatorname{supp}(f)$ has to be right G-invariant and it cannot be contained in BwN_0 for some compact $N_0 \subset N$, as it happens with all the functions in V (see the proof of lemma 10).

The canonical N-map $X \to \mathbb{C} \cong X/V$ identifies the N-space $\mathbb{C}f$. Hence $nf = f \ \forall n \in N$. Take $x \in F$ and consider the identity

$$w\begin{pmatrix}1 & x\\0 & 1\end{pmatrix} = \begin{pmatrix}1 & x^{-1}\\0 & 1\end{pmatrix}\begin{pmatrix}-x^{-1} & 0\\0 & x\end{pmatrix}\begin{pmatrix}1 & 0\\x^{-1} & 1\end{pmatrix}$$

Since f is locally constant, then f is fixed under right translation by $\begin{pmatrix} 1 & 0 \\ x^{-1} & 1 \end{pmatrix}$ when |x| is sufficiently large. Since f is also fixed by N, we have

$$f(w) = \chi_1(-1)\chi_1^{-1}\chi_2(x)f(1)$$

for all $x \in F^*$ of sufficiently large absolute value. Thus $\chi_1 = \chi_2$.

Conversely, assume that $\chi_1 = \chi_2$. Then, as a *B*-representation, then

$$\chi(b) = \chi_1(\det b) \ \forall b \in B$$

Thus

$$X = \chi_1(\det g) \operatorname{Ind}_B^G(\mathbb{C}_B)$$
(2)

where \mathbb{C}_B is the trivial *B*-representation. The function

$$f: G \to \mathbb{C}: g \mapsto \chi_1(\det g)$$

generates an invariant subspace.

Proof of theorem 9. Assume X is reducible. By proposition 11, X contains a finite dimensional subspace or a finite dimensional quotient.

Assume the first alternative. Since V does not contain any finite dimensional G-subspace, X contains a one dimensionsal G-subspace L satisfying that $L \cap V = 0$. Thus we are in the case when $\chi_1 = \chi_2$.

The quotient X/L is thus isomorphic to V, which has B-composition length 2 and a unique one dimensional quotient $V_N \cong (\chi_1 \circ \det) \delta_B^{-1}$. If it was a G quotient, then G would act on V_N by a $\phi \circ \det$, where ϕ is a character of F^* . Indeed, since the commutator subgroup of $\operatorname{GL}_2(F)$ is $\operatorname{SL}_2(F)$, then all characters of G are of this form. However, this is not possible by proposition 4.

In the case when X has a finite dimensional quotient, then X^{\vee} has a one dimensional subspace. By the duality theorem,

$$X^{\vee} = \operatorname{Ind}_B^G \delta_B^{-1} \chi^{-1}$$

Hence we are in the situation where $\chi_1 \chi_2^{-1}(x) = |x|^2$.

1	-	-	-	

4 Steinberg representation and final classification of noncuspidal representations.

Definition 13. Let $\chi_1, \chi_2 : F^* \to \mathbb{C}^*$ be two smooth characters and denote by $\chi = \chi_1 \otimes \chi_2$ the corresponding character of *T*. Consider the representation

$$I(\chi_1,\chi_2) = \operatorname{Ind}_B^G(\delta_B^{-1/2} \otimes \chi)$$

Explicitly, this representation is described as

$$I(\chi_1,\chi_2) = \left\{ f: G \to \mathbb{C} \text{ locally constant} : f\left[\begin{pmatrix} a & b \\ 0 & d \end{pmatrix} g \right] = \sqrt{\frac{|a|}{|d|}} \chi_1(a)\chi_2(d)f(g) \right\}$$

By the duality theorem, we have the following result

Proposition 14.

$$I(\chi) = I(\chi_1, \chi_2)^{\vee} \cong I(\chi_1^{-1}, \chi_2^{-1})$$

Definition 15. The *Steinberg representation* of G, denoted by St_G is defined by the exact sequence

$$0 \longrightarrow \mathbb{C}_G \longrightarrow \operatorname{Ind}_B^G(\mathbb{C}_B) \longrightarrow \operatorname{St}_G \longrightarrow 0$$

where \mathbb{C}_G and \mathbb{C}_B denote the trivial representations of G and B, respectively.

Before proving the self-duality of the Steinberg representation, consider the following lemma.

Lemma 16. Let χ and ξ be characters of T. Then the space $\operatorname{Hom}_G(\operatorname{Ind}_B^G \chi, \operatorname{Ind}_G^B \xi)$ has dimension 1 if $\xi = \chi$ or $\chi = \chi^w \delta_B^{-1}$.

Proof. By Frobenius reciprocity,

$$\operatorname{Hom}_{G}(\operatorname{Ind}_{B}^{G}\chi,\operatorname{Ind}_{G}^{B}\xi)\cong\operatorname{Hom}_{T}((\operatorname{Ind}_{B}^{G}\chi)_{N},\xi)$$

By lemma 10, the Jaquet module fits as a T-representation into the exact sequence

$$0 \longrightarrow \chi^w \delta_B^{-1} \longrightarrow (\operatorname{Ind}_B^G \chi)_N \longrightarrow \chi \longrightarrow 0$$

If $\chi \neq \chi^w \delta_B^{-1}$, the above exact sequence splits and the lemma is clear. When $\chi = \chi^w \delta_B^{-1}$ then $\operatorname{Ind}_B^G \chi$ is irreducible and the lemma follows by Schur's lemma.

Proposition 17. The Steinberg representation is self-dual.

Proof. Consider the exact sequence

 $0 \longrightarrow \mathbb{C}_G \longrightarrow \operatorname{Ind}_B^G \mathbb{C}_B \longrightarrow \operatorname{St}_G \longrightarrow 0$

Dualising it,

$$0 \longrightarrow St_G^{\vee} \longrightarrow \operatorname{Ind}_B^G \delta_B^{-1} \longrightarrow \mathbb{C}_G \longrightarrow 0$$

By lemma 16, we have that

$$\operatorname{Hom}(\operatorname{Ind}_B^G \mathbb{C}_B, \operatorname{Ind}_B^G \delta_B^{-1}) \cong \mathbb{C}$$

Since those representations are not isomorphic, any non-zero homomorphism induces an isomorphism $\operatorname{St}_G \cong \operatorname{St}_G^{\vee}$. Considering all the above, the final classification theorem follows.

Theorem 18. The isomorphism classes of irreducible, non-cuspidal representations of G are

- $I(\chi_1, \chi_2)$, where $\chi_1 \chi_2^{-1} \neq |\cdot|^{\pm 1}$.
- The one dimensional representations $\phi \circ \det$, where ϕ ranges over the characters of F^* .
- The special representations $(\phi \circ \det) \operatorname{St}_G$, where ϕ ranges over the characters of F^* .

The classes in this list are all distinct except $I(\chi_1, \chi_2) \cong I(\chi_2, \chi_1)$ in the first case.

References

- Colin J. Bushnell and Guy Henniart. The local Langlands conjecture for GL(2). Vol. 335. Springer Verlag, 2006.
- [2] David Loeffler. "Modular Forms and Representations of GL(2)". In: (2018).