Class Field Theory

CM Study Group. Lecture 3

Alberto Angurel Andrés

University of Nottingham

02/12/2022

- Class field theory relates the abelian extensions of a local or a number field with the arithmetic of its field.
- It was developed between 1850 and 1930 by Kronecker, Webber, Hilbert, Artin...
- Its proofs comes from duality theorems in the cohomology theory of finite groups.
- It provides powerful results which are really useful in number theory.
- $\bullet\,$ There are recent conjectures regarding to non-abelian extension $\rightarrow\,$ Langlands' program

Local Class Field Theory

- Let K be a local field
- Let L|K be a finite, abelian extension
- \Rightarrow There is an isomorphism (Artin map)

$$(, L|K): \frac{K^*}{N_{L|K}L^*} \to G(L|K)$$

Existence Theorem

There is a bijection between the finite, abelian extensions of K and the subgroups of finite index in K^* .

Example

$$G(K^{ab}|K) = \varprojlim_{L \subset K^{ab}} G(L|K) = \varprojlim_{L \subset K^{ab}} \frac{K^*}{N_{L|K}L^*} = \widehat{K^*}$$

Local Class Field Theory

- Let K be a local field
- Let L|K be a finite, abelian extension
- \Rightarrow There is an isomorphism (Artin map)

$$(, L|K): \frac{K^*}{N_{L|K}L^*} \rightarrow G(L|K)$$

Unramified Extensions

- L|K unramified $\Rightarrow G(L|K) \cong G(I|k)$
- There is a Frobenius automorphism $\varphi \in G(L|K)$
- It is characterised by $\overline{\varphi(x)} = \overline{x}^q$, where q = #k.
- $(a, L|K) = \varphi^{v(a)} \in G(L|K) \; \forall a \in K^*$
- L|K unramified $\Leftrightarrow U_K \subset N_{L|K}L^*$

$$I_{\mathcal{K}} := \left\{ (a_{\mathfrak{p}}) \in \prod_{\mathfrak{p} \in M_{\mathcal{K}}} \mathcal{K}^*_{\mathfrak{p}} : a_{\mathfrak{p}} \in U_{\mathfrak{p}} ext{ for almost every } \mathfrak{p} \in M_{\mathcal{K}}
ight\}$$

We have an injection

$$K^* \hookrightarrow I_K$$
: $a \mapsto (a, a, \dots, a)$

Definition

Idele Class Group: $C_K := \frac{I_K}{K^*}$

Proposition

The ideal class group is

$$J_{K} := \frac{I_{K}}{I_{K}^{S_{\infty}}K^{*}}$$

- Let *K* be a number field
- Let L|K be a finite, abelian extension

 \Rightarrow There is an action of G = G(L|K) on I_L that behaves well with principal ideals \rightarrow There is a norm map in the class group. \Rightarrow

The following map (Artin map) is an isomorphism

$$(, L|K): \ \frac{C_K}{N_{L|K}C_L} \to G(L|K), \ \overline{a} \mapsto \prod_{\mathfrak{p} \in M_K} (a_p, L_\beta|K_\mathfrak{p})$$

Existence Theorem

{Abelian, finite extensions of K} \leftrightarrow {Open subgroups in C_K }

Hilbert Class Field of a number field K

Abelian extension H|K associated to the subgroup

$$U^{\mathcal{S}_{\infty}}_{\mathcal{K}}\mathcal{K}^{*}=\left(\prod_{\mathfrak{p}\in M^{\infty}_{\mathcal{K}}}\mathcal{K}^{*}_{\mathfrak{p}} imes\prod_{\mathfrak{p}\in M^{0}_{\mathcal{K}}}\mathcal{U}_{\mathfrak{p}}
ight)\mathcal{K}^{*}$$

$$G(H|K)\cong J_K$$

Theorem

The Hilbert class field of K is the maximal abelian extension of K which is unramified at every (finite and infinite) prime $\mathfrak{p} \in M_K$.

We fix an abelian extension L|K of number fields and let S be the finite set of primes which ramifies in S.

Let $I \leq R_K$ be an integral ideal of K which is not divisible by any of the primes in S.

By the unique factorisation in Dedekind domains, $I = \mathfrak{p}_1^{\alpha_1} \cdots \mathfrak{p}_r^{\alpha_r}$

We define

$$(I,L|K) := \prod_{i=1}^r \left(\pi_{\mathfrak{p}_i}^{lpha_i}, L_eta | K_\mathfrak{p}
ight)$$

Proposition

Let L|K be a finite, abelian extension. The **conductor** $c_{I|K}$ is the maximal ideal c satisfying the property

 $((\alpha), L|K) = 1 \ \forall \alpha \in K^* \text{ such that } \alpha \equiv 1 \pmod{2}$

Remark

It is clear that the maximal ideal exist since, assuming that c_1 and c_2 satisfy the property in the above definition, then $c_1 + c_2$ does so.

Theorem

Given a finite, abelian extension of number fields L|K, we have that

$$c_{L|K} = \prod_{\mathfrak{p}\in M_K^0}\mathfrak{p}^{n_\mathfrak{p}}$$

where n_{p} is the minimal natural number n such that

$$U_{\mathfrak{p}}^n = 1 + (\pi^n) \subset N_{L_{\beta}|K_{\mathfrak{p}}}$$

(Notice that $n_p = 0$ if and only if L|K is unramified at p.

Example

The conductor of the Hilbert Class Field extension is (1).

Definition

Given an integral ideal c of K, the ray class field K_c is a finite, abelian extension of K whose conductor is c with the property that for any finite abelian extension L|K

$$\mathfrak{c}_{I|K}|\mathfrak{c} \Rightarrow L \subset K_\mathfrak{c}$$

Remark

If $\mathfrak{c} = \mathfrak{p}_1^{\alpha_1} \cdots p_r^{\alpha_r}$, the ray class $K_\mathfrak{c}$ is the field extension associated to the norm group

$$N = \left(\prod_{\mathfrak{p}\neq\mathfrak{p}_i} K^*_{\mathfrak{p}} \times \prod_{i=1}^r U^{\alpha_i}_{\mathfrak{p}_i}\right) K^*$$

Example

The Hilbert class field it the ray class field of $\mathfrak{c} = 1$.

Theorem

Let L|K be a finite abelian extension of number fields and let \mathfrak{c} be an integral ideal of K.

The Artin map

$$(\cdot, L|K): \ I(\mathfrak{c}_{I|K}) o Gal(L|K)$$

is a surjective homomorphism.

- The kernel of the Artin map is $(N_{L|K}I_L)P(\mathfrak{c}_{L|K})$.
- There exists a unique ray class field K_c of K associated to c. The conductor of $K_c | K$ divides c.
- That ray class field K_c is characterised by the property that it is an abelian extension of K and satisfies that the primes of K that split completely in K_c are exactly those in P(c).

Theorem (Dirichlet)

Let K be a number field and c an integral ideal of K. Then every ideal class in I(c)/P(c) contains infinitely many degree 1 primes.

Theorem (Kronecker-Webber)

Every finite, abelian extension $L|\mathbb{Q}$ is contained in a cyclotomic extension $\mathbb{Q}(\zeta)|\mathbb{Q}$, where ζ is a root of unity.

Corollary

 \mathbb{Q}^{ab} is generated by the roots of unity.

Consider the Artin Map

$$I_{\mathbb{Q}}
ightarrow G(\mathbb{Q}^{ab}|\mathbb{Q}): \ s \mapsto [s,\mathbb{Q}]$$

Notice the Galois automorphisms act on $\mu := (\mathbb{C}^*)_{\textit{tors}}$

$$\mu \cong \mathbb{Q}/\mathbb{Z}$$

Idelic Multiplication on \mathbb{Q}/\mathbb{Z}

• Let $x \in I_{\mathbb{Q}}$. Our goal is to define a multiplication by x

 $\mathbb{Q}/\mathbb{Z} \to \mathbb{Q}/x\mathbb{Z}$

- Notice that $\mathbb{Q}/\mathbb{Z} \cong \bigoplus_{p} \mathbb{Q}_{p}/\mathbb{Z}_{p}$. Why?
 - Each torsion, abelian group is the direct sum of its *p*-primary components.
 - $(\mathbb{Q}/\mathbb{Z})_{\rho} = \mathbb{Z}[\rho^{-1}]/\mathbb{Z} \cong \mathbb{Q}_{\rho}/\mathbb{Z}_{\rho}$
- We define

$$x\mathbb{Z}:=\prod_p p^{v_p(x_p)}=N_x\mathbb{Z}$$

- $\mathbb{Q}/x\mathbb{Z} := \mathbb{Q}/N_x\mathbb{Z} \cong \bigoplus \mathbb{Q}_p/N_x\mathbb{Z}_p \cong \bigoplus \mathbb{Q}_p/x_p\mathbb{Z}_p$
- We have the following commutative diagram

Cyclotomic class field Theory

Theorem

Let
$$\sigma \in \operatorname{Aut}(\mathbb{C})$$
 and let $s \in \mathbb{A}_{\mathbb{Q}}$ be an idele such that $[s, \mathbb{Q}] = \sigma|_{\mathbb{Q}^{ab}}$.

Let N_S be the unique rational number such that $v_p(s_p) = v_p(N_s)$ and $sgn(s_{\infty}) = sgn(N_S)$ and define the maps

$$\begin{array}{ccc} f: \ \mathbb{C}/\mathbb{Z} \to \mu; & f_s: \ \mathbb{C}/s^{-1}\mathbb{Z} \to \mu \\ t \mapsto e^{2\pi i t} & t \mapsto e^{2\pi i N_s t} \end{array}$$

Then the following diagram is commutative

Cyclotomic class field theory

Proof.

• We need to proof that

$$(e^{2\pi it})^{[s,\mathbb{Q}]} = e^{2\pi i N_s(s^{-1}t)}$$

• Let
$$t = \frac{a}{n}$$
 and let $\zeta = f(t) = e^{\frac{2\pi i a t}{n}}$

• Case 1:
$$s_p \equiv 1 \mod n\mathbb{Z}_p$$
 and $s_\infty > 0$

•
$$[s,\mathbb{Q}]_{\mathbb{Q}(\zeta)} = (s,\mathbb{Q}(\zeta)|\mathbb{Q}) = (N_s\mathbb{Z},\mathbb{Q}(\zeta)|\mathbb{Q}) \Rightarrow$$

•
$$f(t)^{[s,\mathbb{Q}]} = \zeta^{[s,\mathbb{Q}]} = \zeta^{N_s} = f(t)^{N_s}$$

•
$$t = \frac{a}{n} = \sum \frac{a_p}{p^{e_p}} \in \bigoplus_p \mathbb{Q}_p / \mathbb{Z}_p$$

•
$$s^{-1}t := \sum \frac{s_p^{-1}a_p}{p^{e_p}} \equiv \sum \frac{a_p}{p^{e_p}} = t$$

•
$$f_s(s^{-1}t) = f_s(t) = e^{2\pi i N_s t} = f(t)^{N_s} = f(t)^{[s,\mathbb{Q}]}$$

Proof.

- General Case:
 - Chinese remainder theorem $\Rightarrow \exists r \in \mathbb{Q}^*$ such that rs satisfies the hypothesis of case 1.
 - We have that $N_{rs} = rN_s$ and $(rs)^{-1}t = r^{-1}(s^{-1}t)$

•
$$f(t)^{[s,\mathbb{Q}]} = f(t)^{[rs,\mathbb{Q}]} = f_{rs}((rs)^{-1}t) = e^{2\pi i t N_{rs}(rs)^{-1}t} = e^{2\pi i t N_s s^{-1}t} = f_s(s^{-1}t)$$

Thank you for your attention!

