Global Kirillov models

Alberto Angurel

February 19, 2025

Disclaimer This notes have been made in preparation for a one hour talk about principal series representations of $GL_2(F)$ in a study group about automorphic representations. The content is based on [1]. They have been made for my own benefit and they may contain mistakes.

1 Global Kirillov models

Recall that $S_{k,t}$ was the space of adelic modular forms of weight (k,t). Let $\mathcal{F} \in S_{k,t}$ and, for every $x \in \mathbb{A}_f$, define $\gamma_x := \begin{pmatrix} x & 0 \\ 0 & 1 \end{pmatrix}$ and

$$\mathcal{F}_x = \mathcal{F}\left(\gamma_x, \tau\right)$$

We have seen that \mathcal{F}_x is a modular form for some level Γ , so it has a Fourier expansion. Indeed, since $\begin{pmatrix} 1 & h \\ 0 & 1 \end{pmatrix} \in \Gamma$ for some $h \in \mathbb{Z}$, \mathcal{F}_x admits a Fourier expansion in $e^{2\pi i n/h}$ for $n \in \mathbb{Z}$. That motivates the following definition.

Definition 1. Let $\mathcal{F} \in S_{k,t}$ and let $a_1(\mathcal{F}_x)$ be the Fourier coefficient associated to $e^{2\pi i\tau}$. Define

$$\phi_{\mathcal{F}}(x) := a_1(\mathcal{F}_x)$$

Proposition 2. (Properties of $\phi_{\mathcal{F}}$)

- 1. $\phi_{\mathcal{F}}$ is a smooth function on $\mathbb{A}_{\mathbf{f}}^{\times}$.
- 2. There exists an open compact subset $W \subset \mathbb{A}_f$ such that $\phi_{\mathcal{F}}$ is supported in $W \cap \mathbb{A}_f^{\times}$.
- 3. Let $q \in \mathbb{Q}_+^{\times}$. Then

$$\phi_{\mathcal{F}}(qx) = q^{-t}a_q(\mathcal{F}_x)$$

Proof. By the automorphic form relation, $\mathcal{F}(\gamma_n \gamma_x, \tau) = q^{-t} \mathcal{F}(\gamma_x, q\tau)$. Hence $a_1(\mathcal{F}_{qx}) = q^{-t} a_q(\mathcal{F}_x)$.

4. The association $\mathcal{F} \to \phi_{\mathcal{F}}$ is injective.

Proof. By (iii), $\phi_{\mathcal{F}}$ determines $\mathcal{F}_x(\tau)$ for all $x \in \mathbb{A}_f^{\times}$ and $\tau \in \mathcal{H}$. It determines \mathcal{F} because a there is a set of representatives fo $\mathrm{GL}_2^+(\mathbb{Q})\backslash\mathrm{GL}_2(\mathbb{A}_f)/U$ contained in $\begin{pmatrix} \mathbb{A}_f^{\times} & 0 \\ 0 & 1 \end{pmatrix}$.

5. Let $\theta: \mathbb{A}_{\mathbf{f}}^{\times} \to \mathbb{C}^{\times}$ be the unique smooth character satisfying that $\Theta(x) = e^{-2\pi ix}$ for all $x \in \mathbb{Q}$. Then

$$\phi \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix}_{\mathcal{F}} (x) = \theta(bx)\phi_{\mathcal{F}(ax)}$$

Our goal is to study the space $S_{k,t}$.

Definition 3. A cuspidal automorphic representation (CAR) π is an irreducible sub-representation of $S_{k,t}$.

Proposition 4. We have

$$S_{k,t} = \bigoplus_{\pi \text{ CAR of wt. } (k,t)} \pi$$

Definition 5. The global Kirillov model of π is

$$K(\pi) = \{ \phi_{\mathcal{F}} : \mathcal{F} \in \pi \}$$

2 Review of local Kirillow models

Let θ_{ℓ} the continuous extension to \mathbb{Q}_{ℓ} of the character θ defined in proposition 2 (v). Recall the unipotent sugroup

$$N = \left\{ \begin{pmatrix} 1 & * \\ 0 & 1 \end{pmatrix} \right\} \subset \mathrm{GL}_2(\mathbb{Q}_\ell)$$

Let π_{ℓ} be an irreducible representation of $GL_2(\mathbb{Q}_{\ell})$.

Theorem 6. (Kirillov)

$$\dim_{\mathbb{C}} \operatorname{Hom}_{N}(V, \theta) = 1$$

Remark 7. Kirillov's theorem holds true for every non-trivial character θ .

Definition 8. Let $\lambda \in \text{Hom}_N(V, \theta) \setminus \{0\}$. For $v \in \pi_{\ell}$, the Kirillov function is

$$\phi_v: \mathbb{Q}_{\ell}^{\times} \to \mathbb{C}, \ a \mapsto \lambda \begin{bmatrix} \begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix} v \end{bmatrix}$$

The Kirillov model of π_{ℓ} is

$$K(\pi_{\ell}, \theta_{\ell}) = \{ \phi_v : v \in \pi_{\ell} \}$$

Kirillov models were used to prove the following theorem:

Theorem 9. (Casselman) Assume π_{ℓ} is not 1-dimensional. Let

$$U_n := \left\{ g \in \operatorname{GL}_2(\mathbb{Z}_\ell) : g \equiv \begin{pmatrix} * & * \\ 0 & 1 \end{pmatrix} \mod \ell^n \right\}$$

- 1. There exists $n \in \mathbb{N}$ such that $V^{U_n} \neq 0$.
- 2. Let the conductor c of π_{ℓ} be the minimal n such that $V^{U_n} \neq 0$. If $m \geq c$, then

$$\dim\left(V^{U_m}\right) = m - c + 1$$

3 Relation between the local and global Kirillov models

The relation between adelic and local representations is given by restricted tensor products:

Definition 10. Suppose we have a collection of vector spaces X_{ℓ} , with ℓ being a prime, and vectors $x_{\ell}^0 \in X_{\ell}$, non-trivial for almost all ℓ . Define the restricted tensor product

$$\bigotimes_{v}'(X_{\ell}, x_{\ell}^{0}) \subset \bigotimes_{\ell} X_{\ell}$$

as the subspace spanned by tensors $\otimes x_{\ell}$ satisfying that $x_{\ell} = x_{\ell}^{0}$ for almost all ℓ .

This definition is motivated by the following theorem:

Theorem 11. (Flath's tensor product theorem) Let π be an irreducible smooth representation of $GL_2(\mathbb{A}_f)$. Then there are uniquely determined irreducible representations π_ℓ of $GL_2(\mathbb{Q}_\ell)$ and $\phi_\ell^0 \in \pi_\ell^{GL_2(\mathcal{O}_\ell)}$ such that

$$\pi\cong igoplus_\ell'(\pi_\ell,\phi_\ell^o)$$

Remark 12. In Flath's tensor product theorem, almost all π_{ℓ} are spherical, as they admit a non-zero $\mathrm{GL}_2(\mathbb{Z}_{\ell})$ -fixed vector, i.e., almost all π_{ℓ} can be seen as simple $\mathcal{H}(\mathrm{GL}_2(\mathbb{Q}_{\ell}), e_{GL_2(\mathbb{Z}_{\ell})})$ -modules. Moreover, it implies that $c(\pi_{\ell}) = 0$ for almost all ℓ

Example 13. If we endow $GL_2(\mathbb{A}_f)$ with the subspace topology of the injection

$$\operatorname{GL}_2(\mathbb{A}_{\mathrm{f}}) \hookrightarrow \mathbb{A}_{\mathrm{f}}^4 \times \mathbb{A}_{\mathrm{f}}^\times, \ \gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mapsto (a, b, c, d, \det(\gamma)^{-1})$$

Then the adelic Hecke algebra can be expressed as a restricted tensor product of the local Hecke algebras:

$$\mathcal{H}(\mathrm{GL}_2(\mathbb{A}_f)) = \bigotimes_{\ell}' (\mathcal{H}(\mathrm{GL}_2(\mathbb{Q}_\ell)), e_{\mathit{GL}_2(\mathbb{Z}_\ell)})$$

where $\mathcal{H}(G)$ is the set of compactly supported complex functions on G with the convolution product and $e_{GL_2(\mathbb{Z}_{\ell})}$ is the normalised characteristic function of $GL_2(\mathbb{Z}_{\ell})$.

Proposition 14. Let π be a CAR and let $\pi \cong \bigotimes_{\ell}' \pi_{\ell}$ be the isomorphism given by Flath's tensor product theorem. Then π_{ℓ} is an infinite-dimensional irreducible representation of $GL_2(\mathbb{Q}_{\ell})$ and we have an isomorphism

$$K(\pi) \to \bigotimes_{\ell}' K(\pi_{\ell}, \theta_{\ell}), \ \phi_{\otimes x_{\ell}} \mapsto \otimes_{\ell} \phi_{x_{\ell}}$$

Corollary 15. (Multiplicity one) Let π_1 , π_2 be two CAR of weight (k,t) such that $\pi_1 \cong \pi_2$ as $\mathrm{GL}_2(\mathbb{A}_f)$ -representation. Then $\pi_1 = \pi_2$.

Proof. If $\pi_1 \cong \pi_2$, then $\pi_{1,\ell} \cong \pi_{2,\ell}$ by Flath's theorem. By uniqueness of local Kirillov models, $K(\pi_{1,\ell}, \theta_\ell) = K(\pi_{2,\ell}, \theta_\ell)$ as function spaces on \mathbb{Q}_ℓ^* . By proposition 14, $K(\pi_1) = K(\pi_2)$. By proposition 2 (iv), the automorphic form \mathcal{F} is recovered from its image $\phi_{\mathcal{F}} \in K(\pi_i)$. Hence $\pi_1 = \pi_2$.

Corollary 16. (Strong multiplicity one) Let π_1 , π_2 be cuspidal automorphic representations of weight (k,t). Suppose $\pi_{1,\ell} \cong \pi_{2,\ell}$ for almost all ℓ . Then $\pi_1 = \pi_2$.

Remark 17. The analogue of multiplicity one for SL_2 is true, but the naive analogue of strong multiplicity one is false.

4 Relation between CAR and newforms

Definition 18. Let ϕ be a CAR. Define the *conductor* of π as

$$c(\pi) = \prod_{\ell} \ell^{c(\pi_{\ell})}$$

Remark 19. The conductor is well defined since almost all π_{ℓ} are spherical.

Remark 20. Recall that

$$U_1(N) = \left\{ \gamma \in \mathrm{GL}_2(\mathbb{A}_{\mathrm{f}}) : \ \gamma \equiv \begin{pmatrix} * & * \\ 0 & 1 \end{pmatrix} \mod N \right\}$$

If $c(\pi) \nmid N$, Casselman's theorem implies that $\pi^{U_1(N)} = 0$. Otherwise,

$$\dim_{\mathbb{C}} \pi^{U_1(N)} = \prod_{\ell} \ell^{v_{\ell}(N) - v_{\ell}(c(\pi))} = \# \text{divisors of } N/c(\pi)$$

Proposition 21. There is a bijection between the CARs of weight (k,t) and the normalised new eigenforms in $S_k(\Gamma_1(N))$ for some N. It sends a CAR π to the (normalised) modular form spanning $\pi^{U_1(c(\pi))}$.

Proof. (Sketch) Given a cuspidal representation π , let $f_{\pi} = \mathcal{F}_{\pi}(1,\cdot)$ for a generator \mathcal{F}_{π} of $\pi^{U_1(c(\pi))}$.

Any Hecke operator T_{ℓ} or U_{ℓ} restricts to π because of corollary 15. Since the Hecke operator is

$$\begin{bmatrix} U_1(N) \begin{pmatrix} \omega_{\ell} & 0 \\ 0 & 1 \end{pmatrix} U_1(N) \end{bmatrix}$$

it has also remain $\pi^{U_1(c(\pi))}$ invariant. Since $\pi^{U_1(c(\pi))}$ is one-dimensional, it has to act on \mathcal{F}_{π} by multiplication by scalars.

We may rescale f_{π} such that $a_1(f_{\pi}) = 1$. Then f_{π} is a newform since π is orthogonal to other CAR with the scalar product in L^2 .

Corollary 22. The space of classical cusps forms descomposes as

$$S_k(\Gamma_1(N)) \cong \bigoplus_{c(\pi)|N} S_k(\Gamma_1(N))[\pi]$$

where

$$S_k(\Gamma_1(N))[\pi] = \left\langle f_{\pi}(d\tau) : d \mid \frac{N}{c(\pi)} \right\rangle$$

Corollary 23. If f_{π} is the nweform corresponding to π and $\pi \cong \otimes' \pi_{\ell}$. Then

$$\pi_{\ell} \cong I(\alpha_{\ell}, \beta_{\ell}) = \operatorname{Ind}_{B}^{G}(\alpha_{\ell} \otimes \beta_{\ell})$$

where B is the Borel subgroup of $G = GL_2(\mathbb{Q}_\ell)$ and α_ℓ, β_ℓ are two unramified characters ending ℓ to the roots of

$$X^2 - \frac{a_{\ell}(\mathcal{F}_{\pi})}{\ell^{t-1/2}} + \ell^{k-2t} \varepsilon(\ell)$$

where ε is the nebentype character of f_{π} .