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Setting

E/Q is an elliptic curve defined over the rationals.

f is its associated modular form: L(E , s) = L(f , s).

We fix a prime p satisfying the following conditions
p > 2
E has good ordinary reduction at p.
The natural action GQ on Tp(E) is surjective.
Other conditions: µ = 0, p 6 |

∏
cv , p 6 |#E(Fp)

Q∞/Q is the cyclotomic Zp-extension.
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Selmer group of an elliptic curve

Kummer sequence

0 // E [pN ] // E
·pN // E // 0

Taking Galois cohomology,

0 // E(K)/pNE(K) //

��

H1(K ,E [pN ]) //

Res

�� ''

H1(K ,E)[pN ] //

Res

��

0

0 // ∏
v E(Kv )/pNE(Kv ) // ∏

v H1(Kv ,E [pN ]) // H1(Kv ,E)[pN ] // 0

Definition

Sel(K ,E [pN ]) := ker

(
H1(K ,E [pN ])→

∏
v

H1(Kv ,E [pN ])

E(Kv )⊗ Z/pN

)

Fact

Gal(K/Q) acts on Sel(K ,E [pN ]) by conjugation.
The Selmer group is a Zp[Gal(K/Q)] module.
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Relation with the Mordell-Weil group

Definition

Sel(Q,E [p∞]) = lim−→Sel(Q,E [pN ])

The Kummer sequence can be written in this case as

0 // E(Q)⊗Qp/Zp
// Sel(Q,E [p∞]) //X(E/Q)[p∞] // 0

E(Q)⊗Qp/Zp
∼= (Qp/Zp)r

Sel(Q,E [p∞]) ∼= (Qp/Zp)s × (finite)⇒ s ≥ r

Conjecturally X(E/Q) finite, so r = s.

Assuming this conjecture, #X(E/Q)[p∞] = #(finite).

#X(E/Q) appears in the BSD formula.
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Modular symbols

Modular symbols[ a

m

]
= 2πi

∫ a
m

∞
f (z) dz ,

[ a

m

]+

=
1

Ω+
E

([ a

m

]
+
[−a

m

])
∈ Z(p)

Mazur-Tate element

θm =
∑

(a,m)=1

[ a

m

]+

σa ∈ Zp[Gal(Q(µm)/Q)]

Remark

θ is related to the p-adic L-function

ϑpn = α−n (θpn − νpn,pn−1θpn−1

)
; ϑp∞ = lim←−ϑpn ∈ Zp[[Gal(Q∞/Q]]

where α is a root of x2 − apx + p.
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Quantities δm

Proposition/definition

Let m = l1 · · · lr be a square-free integer. Then we have that

Gal(Q(µm)/Q) = Gl1 × · · · × Glr , where Gli := Gal(Q(µli )/Q)

Fix τi a generator of Gli .
Then there exists some element δm ∈ Z/pN such that

θm ≡ (−1)rδm(τl1 − 1) · · · (τlr − 1) mod
(

pN , (τl1 − 1)2, . . . , (τlr − 1)2
)

Remark

The value of δm might depend on the chosen generators σli but ordp(δm) does
not.

Remark

The quantities δm are effectively computable.
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Bounding the Selmer group

Consider primes l ≡ 1 mod pN such that E has good reduction at l and
Ẽ(Fl)[pN ] ∼= Z/pN .
Let N (N) be the set of square-free products of those primes.
We have the following map

Sel(Q,E [pN ])→
⊕
l|m

E(Ql)⊗ Z/pN ∼=
⊕
l|m

Ẽ(Fl)⊗ Z/pN ∼=
(
Z/pN

)ν(m)

Theorem (Kurihara)

If m ∈ N (N) and δm is a unit in Z/pN , then the above map is injective.

Theorem (Kim, Sakamoto)

If m ∈ N (1) is δ-minimal. Then we have that

Sel(Q,E [p])→
⊕
l|m

E(Ql)⊗ Z/p

is an isomorphism. In particular, dimFp (Sel(Q,E [p])) = ν(m).
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Sel(Q∞,E [p
∞])

Its Pontryagin dual is a finitely generated torsion module over
Λ := Zp[[Gal(Q∞/Q)]] = lim←−Zp[Gal(Qn/Q)] ∼= Zp[[T ]].

Theorem

Since µ = 0, the dual of Selmer group is isomorphic (up to finite kernel and
cokernel) to

X := Homcts(Sel(Q∞,E [p∞]),Qp/Zp) ∼
∏
i

Λ/(fi )
βi

Characteristic ideal

char(X ) :=
∏
i

(fi )
βi ⊂ Λ
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Iwasawa main conjecture

Iwasawa main conjecture

It is the equality of ideals
(ϑp∞) = char(X )

The inclusion ⊂ was proven by Kato.

The other inclusion has been proven under some conditions on the elliptic
curve.

Theorem (Sakamoto)

The existence of some m ∈ N (1) such that δm is a unit in Z/p is equivalent to
the Iwasawa main conjecture.
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Structure of the Selmer group

Assumptions: Iwasawa main conjecture and non-degeneracy of the p-adic
height pairing.

Structure theorem and Cassels-Tate pairing:
Sel(Q,E [p∞])∨ ∼= Zs

p × (Zp/pα1 )2 × · · · (Zp/pαt )2

Under our assumptions, Sel(Q,E [pN ]) = Sel(Q,E [p∞])[pN ], so for N large
enough

Sel(Q,E [pN ])∨ ∼=
(
Zp/pN

)s
× (Zp/pα1 )2 × · · · (Zp/pαt )2

We want to find s, α1 ≥ . . . ≥ αt .
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Structure of the Selmer group

Define the ideals

Θi,N =
({
δm : ν(m) ≤ i ,m ∈ N (N)

})
⊂ Z/pN

Theorem (Kurihara)

For N large enough, we have that

Θ0,N = Θ1,N = · · · = Θs−1,N = 0

Θs+2j,N =
t∏

k=j+1

(p)2αj ∀j = 0, . . . , t

Corollary

If we write Θi,N = pni ,N
(
Z/pN

)
, then ni,N does not depend on N when N is

large enough. Then we can define ni = lim ni,N and we have that

Sel(Q,E [p∞]) ∼= (Qp/Zp)s ×
(
Z/p

ns−ns+2
2

)2

× · · · ×
(
Z/p

ns+2t−2−ns+2t
2

)2
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Thanks for your attention!
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