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Introduction

Let E be an elliptic curve defined over Q.

The object we want to study is Sel(Q,E [p∞]), where p is an odd prime
number such that E has good, ordinary reduction at p. We will also need
to assume p satisfies some technical hypothesis.

There is a short exact sequence

0 // E(Q)⊗Qp/Zp
// Sel(Q,E [p∞]) //X(E/Q)[p∞] // 0

The structure of the Selmer group gives an upper bound for the rank of
the elliptic curve.

If X(E/Q) is finite, then the Selmer group determine the exact rank of
the curve.

There is a modular form such that L(E , s) = L(f , s).

I will use f to define modular symbols, which can be related to the
structure of the Selmer group.
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Modular symbols

Modular symbols[ a
m

]
= 2πi

∫ a
m

∞
f (z) dz ,

[ a
m

]+

=
1

Ω+
E

([ a
m

]
+
[−a
m

])
∈ Q

Remark

Modular symbols are related to the special values of the L-function.[
0

1

]
= L(f , 1)

Mazur-Tate element

θm =
∑

(a,m)=1

[ a
m

]+

σa ∈ Zp[Gal(Q(µm)/Q)]

Remark

A minor modification of θp∞ is the p-adic L-funcion of the elliptic curve

ϑp∞ ∈ lim←−Zp[Gal(Q(µpn )/Q)]
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Quantities δm

Let P be the set of good reduction primes satisfying the following

l ≡ 1 mod p

Ẽ(Fl) ∼= Z/p
Let N be the square-free products of primes in P. Assume m ∈ N .

Gal(Q(µm)/Q) = G1 × · · · × Gr , where Gi := Gal(Q(µli )/Q)

Fix τi a generator of Gi .
Then there exists some element δm ∈ Z/p such that

θm ≡ ±δm(τ1 − 1) · · · (τr − 1) mod
(
p, (τ1 − 1)2, . . . , (τr − 1)2

)
Remark

The value of δm might depend on the chosen generators τi . However, whether
δm vanishes or not is independent of the generators.

Remark

The quantities δm are effectively computable.
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Bounding the Selmer group

Under our assumptions, Sel(Q,E [p]) = Sel(Q,E [p∞])[p].

There is a canonical map

Sel(Q,E [p])→
⊕
l|m

E(Ql)⊗ Z/p ∼=
⊕
l|m

Ẽ(Fl)⊗ Z/p ∼= (Z/p)ν(m)

Theorem (Kurihara)

If m ∈ N and δm is a unit in Z/p, then the above map is injective. In that case,

dimFp (Sel(Q,E [p])) ≤ ν(m)

where ν(m) is the number of prime divisors of m.
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When is this bound the best possible?

Definition

We say that m ∈ N is δ-minimal if

δm 6= 0

δd = 0 for every proper divisor

Theorem (Kim, Sakamoto)

If m ∈ N is δ-minimal. Then

Sel(Q,E [p])→
⊕
l|m

E(Ql)⊗ Z/p

is an isomorphism. In particular, dimFp (Sel(Q,E [p])) = ν(m).
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Structure of Sel(Q∞,E [p
∞])

Let Q∞ be the cyclotomic Zp-extension of the rationals.

We will consider the group X := Homcts(Sel(Q∞,E [p∞]),Qp/Zp)

The Galois group Gal(Q∞/Q) acts on X .

X is a module over Λ = Zp[[Gal(Q∞/Q)]] ∼= Zp[[T ]]

X is a finitely generated, torsion Λ module.

X ∼
∏

i Λ/(fi )
βi ×

∏
j Λ/(p)αj

Define char(X ) =
∏

i (fi )
βi
∏

j(p)αj
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Iwasawa main conjecture

Iwasawa main conjecture

It is the following equality of ideals in Λ

(ϑp∞) = char(X )

The inclusion ⊂ was proven by Kato.

The other inclusion has been proven by Skinner and Urban under some
conditions on the elliptic curve.

Theorem (Sakamoto)

The existence of some m ∈ N such that δm is a unit in Z/p is equivalent to the
Iwasawa main conjecture.
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Structure of the Selmer group Sel(Q,E [p∞])

From now on, I will assume Iwasawa main conjecture and other technical
conditions.

Sel(Q,E [p∞])∨ ∼= Zs
p × (Zp/p

α1 )2 × · · · × (Zp/p
αt )2

Our goal is computing s, α1, . . . , αt .
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Structure of the Selmer group

Define the ideals

Θi,N = ({δm : ν(m) ≤ i ,m ∈ N}) ⊂ Z/pN

Theorem (Kurihara)

For N large enough, we have that

Θ0,N = Θ1,N = · · · = Θs−1,N = 0

Θs+2j,N =
t∏

k=j+1

(p)2αj ∀j = 0, . . . , t

Corollary

If we write Θi,N = pni,N
(
Z/pN

)
, then ni,N does not depend on N when N is

large enough. Then we can define ni = lim ni,N and we have that

Sel(Q,E [p∞]) ∼= (Qp/Zp)s ×
(
Z/p

ns−ns+2
2

)2

× · · · ×
(
Z/p

ns+2t−2−ns+2t
2

)2
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Thanks for your attention!
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