

Selmer structures

Kolyvagir systems

Selme group

Elliptic curves

Kolyvagin systems and Selmer structures of rank 0

Alberto Angurel Andrés

University of Nottingham

05/09/24

Selmer structures

Selmer structures

Kolyvagin systems

Selmer groups Elliptic

Setup

- **p** \geq 5 is a prime number.
- \blacksquare ${\mathcal T}$ is a p-adic Galois representation over ${\mathbb Q}$, i.e.,
 - **T** is a finitely generated free \mathbb{Z}_p -module.
 - There is a continuous action of $G_{\mathbb{Q}}$ on T.

Selmer structure \mathcal{F}

- A finite set Σ of primes containing p, ∞ and those where T is ramified.
- For every $\ell \in \Sigma$, a subgroup $H^1_{\mathcal{F}}(\mathbb{Q}_\ell, T) \subset H^1(\mathbb{Q}_\ell, T)$ called local condition.

Selmer group

$$\operatorname{Sel}_{\mathcal{F}}(\mathbb{Q}, \mathcal{T}) := \operatorname{ker} \left(H^1(\mathbb{Q}_{\Sigma}/\mathbb{Q}, \mathcal{T}) \to \bigoplus_{\ell \in \Sigma} \frac{H^1(\mathbb{Q}_{\ell}, \mathcal{T})}{H^1_{\mathcal{F}}(\mathbb{Q}_{\ell}, \mathcal{T})} \right) \subset H^1(\mathbb{Q}, \mathcal{T})$$

Dual Selmer structure

Selmer structures

Kolyvagin systems

Selmer groups

Elliptic curves

Dual representation

$$T^* := \operatorname{Hom}(T, \mu_{p^{\infty}})$$

Dual Selmer structure

Same set of primes Σ .

■ Local duality: there exists a non-degenerate pairing

$$H^1(\mathbb{Q}_\ell, T) \times H^1(\mathbb{Q}_\ell, T^*) \to \mathbb{Q}_p/\mathbb{Z}_p$$

• $H^1_{\mathcal{F}^*}(\mathbb{Q}_{\ell}, T^*)$ is defined as the orthogonal complement of $H^1_{\mathcal{F}}(\mathbb{Q}_{\ell}, T)$.

• There is a dual Selmer group $\operatorname{Sel}_{\mathcal{F}^*}(\mathbb{Q}, \mathcal{T}^*)$ defined similarly.

Examples of Selmer groups

Example

- Let $T = \lim_{n \to \infty} \mu_{p^n}$ and let K be a number field.
- Let Σ be the primes above p and ∞ .
- Hilbert 90 \Rightarrow $K_v^* \otimes \mathbb{Z}_p \cong H^1(K_v, T).$
- $\blacksquare H^1_{\mathcal{F}}(K_v, T) := U_v \otimes \mathbb{Z}_p \hookrightarrow H^1(K_v, T).$
- There are canonical isomorphisms

$$\operatorname{Sel}_{\mathcal{F}}(K,T) \cong O_K \otimes \mathbb{Z}_p, \quad \operatorname{Sel}_{\mathcal{F}^*}(K,T^*) = \operatorname{Hom}(\operatorname{Cl}(K), \mathbb{Q}_p/\mathbb{Z}_p)$$

Example

- Let T be the Tate module of an elliptic curve E/\mathbb{Q} .
- **L**et Σ be the primes p, ∞ and all bad reduction primes.

$$\blacksquare H^1_{\mathcal{F}}(\mathbb{Q}_{\ell}, T) = \operatorname{Im} \left(E(\mathbb{Q}_{\ell}) \otimes \mathbb{Z}_p \to H^1(\mathbb{Q}_{\ell}, T) \right)$$

• If $\operatorname{III}(E/\mathbb{Q})$ is finite, then $\operatorname{Sel}_{\mathcal{F}}(\mathbb{Q}, T) = E(\mathbb{Q}) \otimes \mathbb{Z}_p$

Selmer structures

Kolyvagin systems

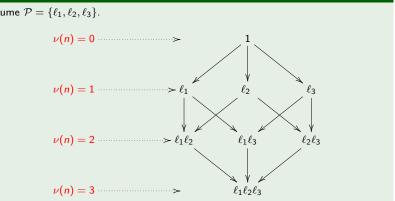
Selmer groups Elliptic

Kolyvagin graph

- Let \mathcal{P} be a set of primes and let \mathcal{N} be the square-free products of primes in \mathcal{P} .
- The vertices of the graph are the elements in \mathcal{N} .
- For every $n \in \mathcal{N}$ and $q \in \mathcal{P}$ such that (n,q) = 1, there is an edge between n and nq.

Example

Assume $\mathcal{P} = \{\ell_1, \ell_2, \ell_3\}.$



Kolyvagin primes

Selmer structures

Kolyvagin systems

Selmer groups

Elliptic curves

Kolyvagin primes \mathcal{P}

 $\bullet \ \ell \equiv 1 \mod p^k.$

•
$$T/(p^k, \operatorname{Frob}_{\ell} - 1) \cong \mathbb{Z}/p^k$$
.

Remark

- $\blacksquare \mathcal{P}_1 \supset \mathcal{P}_2 \supset \cdots \supset \mathcal{P}_k \supset \cdots$
- Chebotarev density theorem \Rightarrow All \mathcal{P}_k are infinite.

Graphs

- We will consider a big Kolyvagin graph with vertices N_1 and a a 'filtration' of subgraphs formed by the vertices in N_k .
- The vertices in \mathcal{N}_k carry more information for bigger values of k.
- Given some $n \in \mathcal{N}_1$, we denote by e_n the maximal k such that $n \in \mathcal{P}_k$.
- The idea is that *n* sees the Selmer group mod p^{e_n} .

Kolyvagin systems

Selmer structures

Kolyvagin systems

Selmer groups Elliptic

curves

Kolyvagin system

- For every vertex $n \in \mathcal{N}_1$, we choose an element $\kappa_n \in \operatorname{Sel}_{\mathcal{F}(n)}(\mathbb{Q}, T) \subset H^1(\mathbb{Q}, T)$.
 - For every edge $n \rightarrow n\ell$, we impose a relation between κ_n and κ_{nl} .

Core rank

•
$$\chi(\mathcal{F}) = \dim_{\mathbb{F}_p} \operatorname{Sel}_{\mathcal{F}}(\mathbb{Q}, T/pT) - \dim_{\mathbb{F}_p} \operatorname{Sel}_{\mathcal{F}^*}(\mathbb{Q}, T^*[p])$$

Rigidity of Kolyvagin systems

•
$$\chi(\mathcal{F}) = 0 \Rightarrow \mathrm{KS}(\mathcal{T}) = 0$$

•
$$\chi(\mathcal{F}) = 1 \Rightarrow \mathrm{KS}(\mathcal{T}) = \mathbb{Z}_{\rho}$$

• $\chi(\mathcal{F}) > 1 \Rightarrow \mathrm{KS}(\mathcal{T})$ is too big.

Structure of the Selmer group when $\chi(\mathcal{F}) = 1$

Theorem (Mazur-Rubin): relation with the Selmer group

Let κ be a primitive Kolyvagin system

- $\operatorname{ord}(\kappa_1) := \sup\{j: \kappa_1 \in p^j \operatorname{Sel}_{\mathcal{F}}(\mathbb{Q}, T)_{/\operatorname{tors}}\}$
- $\operatorname{ord}(\kappa_1) = \operatorname{length}(\operatorname{Sel}_{\mathcal{F}^*}(\mathbb{Q}, T^*)^{\vee})$
- In particular, $\kappa_1 \neq 0 \Leftrightarrow \operatorname{Sel}_{\mathcal{F}^*}(\mathbb{Q}, T^*)$ is finite.

Orders of other vertices

•
$$H^1(\mathbb{Q}, T) \to H^1(\mathbb{Q}, T/p^{e_n}), \ \kappa_n \mapsto \overline{\kappa_n}.$$

• $\operatorname{ord}(\kappa_n) := \sup\{j: \overline{\kappa_n} \in p^j \operatorname{Sel}_{\mathcal{F}(n)}(\mathbb{Q}, T/p^{e_n})\}$

Derivatives

$$\partial^{(0)}(\kappa) = \operatorname{ord}(\kappa_1)$$

•
$$\partial^{(i)}(\kappa) = \inf\{\operatorname{ord}(\kappa_n) : \nu(n) = i\}$$

Theorem (Mazur-Rubin)

$$p^{\partial^{(i)}(\kappa)} = \operatorname{Fitt}_i(\operatorname{Sel}_{\mathcal{F}^*}(\mathbb{Q}, T^*)^{\vee})$$

Alberto Angurel Andres

Selmer structures

Kolyvagin systems

Selmer groups

Elliptic curves Problem There are no non-zero Kolyvagin systems.

 \blacksquare Solution We choose a suitable prime ℓ and consider the relaxed Selmer structure $\mathcal{F}^{\ell}.$

$$\Sigma \to \Sigma \cup \{I\}, \qquad H^1_{\mathcal{F}^\ell}(\mathbb{Q}_\ell, T) = H^1(\mathbb{Q}_\ell, T)$$

- $\chi(\mathcal{F}^{\ell}) = 1 \rightarrow$ choose a primitive Kolyvagin system κ_n .
- Consider the map

$$\operatorname{loc}_{\ell}: \ H^{1}(\mathbb{Q}, T) \to H^{1}(\mathbb{Q}_{\ell}, T) \to \frac{H^{1}(\mathbb{Q}_{\ell}, T)}{H^{1}_{\mathcal{F}}(\mathbb{Q}_{\ell}, T)}$$

•
$$\delta_n := \operatorname{loc}_{\ell}(\kappa_n)$$

• $\operatorname{ord}(\delta_n) = \sup \left\{ j: \ \delta_n \in p^j \left(\frac{H^1(\mathbb{Q}_{\ell}, T/p^{e_n})}{H^1_{\mathcal{F}}(\mathbb{Q}_{\ell}, T/p^{e_n})} \right) \right\}$

- $\partial^{(i)}(\delta) = \inf \{ \operatorname{ord}(\delta_n) : \nu(n) = i \}$
- $\partial^{(i)}(\delta)$ are related to the exponents of the Fitting ideals of the Selmer group $\operatorname{Sel}_{\mathcal{F}^*}(\mathbb{Q}, \mathcal{T}^*)^{\vee}$.

Structure of the Selmer group when $\chi(\mathcal{F}) = 0$

Theorem 1 (A.)

Assume that the residual representations $T/\rho T$ and $T^{\ast}[p]$ have no isomorphic subquotients. Then

$$\boldsymbol{p}^{\partial^{(i)}(\delta)} = \operatorname{Fitt}_i \left(\operatorname{Sel}_{\mathcal{F}^*} (\mathbb{Q}, T^*)^{\vee} \right) \, \forall i \in \mathbb{Z}^{\geq 0}$$

Theorem 2 (A.)

If we drop the non-self-duality assumption, we get

 $p^{\partial^{(i)}(\delta)} \subset \operatorname{Fitt}_i \left(\operatorname{Sel}_{\mathcal{F}^*}(\mathbb{Q}, T^*)^{\vee} \right) \, \forall i \in \mathbb{Z}^{\geq 0}$

Moreover, for some fixed index *i*, the equality holds if either

• The equality does not hold for i - 1.

$$\partial^{(i-1)}(\delta) = \infty$$

Remark

 $\{\partial^{(i)}(\delta)\}_{i\in\mathbb{Z}^{\geq0}}$ determines all the Fitting ideal of the Selmer group and, consequently, its group structure.

Elliptic curves: Selmer group over \mathbb{Q}

- Assume E/\mathbb{Q} and consider the classical Selmer structure.
- Kato constructed an Euler system for T_pE . From it, we can obtain a Kolyvagin system $\kappa \in KS(T_pE, \mathcal{F}^p)$.
- Under certain assumptions, Kato's Kolyvagin system is primitive.

$$\delta_n = \mathrm{loc}_p(\kappa_n) = \sum_{a \in (\mathbb{Z}/n)^*} \left(\left[\frac{a}{n}\right]^+ + \left[\frac{a}{n}\right]^- \right) \prod_{\ell \mid n} \mathrm{log}_{\eta_\ell(a)} \in \mathbb{Z}/p^{e_n}$$

• Functional equation $\Rightarrow \delta_n = 0$ when $(-1)^n \neq \varepsilon$.

$$(-1)^{i} = \varepsilon \Rightarrow p^{\partial^{(i)}(\delta)} = \operatorname{Fitt}_{i} \left(\operatorname{Sel}_{\mathcal{F}}(\mathbb{Q}, T^{*})^{\vee} \right)$$

Theorem (Kim)

The structure of the Selmer group can be written explicitly. Let $r = \min \{i \in \mathbb{Z}^{\geq 0} : \exists n \in \mathcal{N} : \nu(n) = i \land \delta_n \neq 0\}$. Then

$$\operatorname{Sel}(\mathbb{Q}, E[p^{\infty}]) \approx \left(\frac{\mathbb{Q}_p}{\mathbb{Z}_p}\right)^r \times \left(\frac{\mathbb{Z}}{p^{\frac{\partial^{(r)}(\delta) - \partial^{(r+2)}(\delta)}{2}}}\right)^2 \times \cdots \times \left(\frac{\mathbb{Z}}{p^{\frac{\partial^{(s-2)}(\delta) - \partial^{(s)}(\delta)}{2}}}\right)^2$$

Alberto Angurel Andres

Selmer tructure

Kolyvagii systems

Selme group

Elliptic curves

Selmer structures

Kolyvagin systems

Selmer groups

Elliptic curves

- Let E/\mathbb{Q} be an elliptic curve and K/\mathbb{Q} be an abelian extension of degree prime-to-*p*.
- Assume the conductors of *E* and *K* are coprime.
- We want to study $Sel(K, E[p^{\infty}])$. Using Shapiro's lemma

$$\operatorname{Sel}(\mathcal{K}, \mathcal{E}[p^{\infty}]) \cong \operatorname{Sel}(\mathbb{Q}, \mathcal{E}[p^{\infty}]) \otimes \mathbb{Z}_{p}[\operatorname{Gal}(\mathcal{K}/\mathbb{Q})] \sim \bigoplus_{\chi} \operatorname{Sel}(\mathbb{Q}, \mathcal{E}[p^{\infty}]_{\chi})$$

• Kato's Euler system can be twisted to obtain a Kolyvagin system $\kappa_{\chi} \in KS(T_{\rho}E_{\overline{\chi}}, \mathcal{F}^{\rho})$

$$\delta_{n,\chi} = \sum_{\mathbf{a} \in (\mathbb{Z}/nc)^*} \chi(\mathbf{a}) \left(\left[\frac{\mathbf{a}}{n} \right]^+ + \left[\frac{\mathbf{a}}{n} \right]^- \right) \prod_{\ell \mid n} \log_{\eta_\ell(\mathbf{a})} \in \mathbb{Z}_p(\chi)/p^{e_n}$$

Elliptic curves: Selmer group over number fields

Selmer structures

Kolyvagin systems

Selmer groups Elliptic

curves

Theorem 3 (A.)

The Galois structure of $\operatorname{Sel}(\mathbb{Q}, E[p^{\infty}]_{\chi})$ can be described explicitly in terms of modular symbols.

Let $r = \min \{ i \in \mathbb{Z}^{\geq 0} : \exists n \in \mathcal{N} : \nu(n) = i \land \delta_{n,\chi} \neq 0 \}.$

If χ is quadratic, by theorem 2

$$\operatorname{Sel}(\mathbb{Q}, E[p^{\infty}]_{\chi}) \approx \left(\frac{\mathbb{Q}_p}{\mathbb{Z}_p}\right)^r \times \left(\frac{\mathbb{Z}}{p^{\frac{\partial^{(r)}(\delta) - \partial^{(r+2)}(\delta)}{2}}}\right)^2 \times \cdots \left(\frac{\mathbb{Z}}{p^{\frac{\partial^{(s-2)}(\delta) - \partial^{(s)}(\delta)}{2}}}\right)^2$$

If χ is not quadratic, by theorem 1

$$\operatorname{Sel}(\mathbb{Q}, \boldsymbol{E}[p^{\infty}]_{\chi}) \approx \left(\frac{\mathbb{Q}_{p}(\chi)}{\mathbb{Z}_{p}(\chi)}\right)^{r} \times \left(\frac{\mathbb{Z}_{p}(\chi)}{p^{\partial^{(r)}(\delta) - \partial^{(r+1)}(\delta)}}\right) \times \cdots \left(\frac{\mathbb{Z}_{p}(\chi)}{p^{\partial^{(s-1)}(\delta) - \partial^{(s)}(\delta)}}\right)$$

Remark

We can describe the structure of $Sel(K, E[p^{\infty}])$ using modular symbols.