Introducti

Initial settings

Euler system machiner

over abelian extension

Arithmetic of the twisted *L*-values of elliptic curves

Alberto Angurel Andrés

University of Nottingham

04/07/2025

Introduction

Introduction

Initial settings

Euler system

Arithmet over abelian

BSD conjecture

$$r_{\mathrm{alg}} := \mathrm{rank} E(\mathbb{Q}) = \mathrm{ord}_{s=1} L(E,s) =: r_{\mathrm{an}}$$

BSD conjecture

$$r_{\mathrm{alg}} := \mathrm{rank} E(\mathbb{Q}) = \mathrm{ord}_{s=1} L(E, s) =: r_{\mathrm{an}}$$

Today

We consider the set of special values of the twisted L-functions, where

$$L(E,\chi,s) := \sum_{n \geq 1} \frac{\chi(n) a_n}{n^s} = \prod_{q \text{ prime}} \frac{1}{1 - \chi(q) a_q q^{-s} + 1_N(q) \chi^2(q) q^{1-2s}}$$

for every Dirichlet character χ .

BSD conjecture

$$r_{\text{alg}} := \text{rank} E(\mathbb{Q}) = \text{ord}_{s=1} L(E, s) =: r_{\text{an}}$$

Today

We consider the set of special values of the twisted L-functions, where

$$L(E,\chi,s) := \sum_{n \geq 1} \frac{\chi(n) a_n}{n^s} = \prod_{q \text{ prime}} \frac{1}{1 - \chi(q) a_q q^{-s} + 1_N(q) \chi^2(q) q^{1-2s}}$$

for every Dirichlet character χ .

Under the assumption of ${\ensuremath{\mathrm{III}}}$ being finite, we will see that the set

$$\{L(E,\chi,1): \chi \text{ Dirichlet character}\}$$

determines $r_{\rm alg}$ and the group structure of $\rm III$.

Today

We consider the set of special values of the twisted L-functions, where

$$L(E,\chi,s) := \sum_{n \geq 1} \frac{\chi(n)a_n}{n^s} = \prod_{q \text{ prime}} \frac{1}{1 - \chi(q)a_qq^{-s} + 1_N(q)\chi^2(q)q^{1-2s}}$$

for every Dirichlet character χ .

Under the assumption of \coprod being finite, we will see that the set

$$\{L(E,\chi,1): \chi \text{ Dirichlet character}\}$$

determines $r_{\rm alg}$ and the group structure of III.

Generalisation to abelian extensions

The above mentioned set also determines the rank of E(K) and the Galois structure of $\mathrm{III}(E/K)$ for most abelian extensions K/\mathbb{Q} .

General picture

Introduction

Initial settings

Euler system machiner

over abelian extension

Initial settings

Euler system machiner

Arithmeti over abelian extension

Introducti

Initial settings

Euler system machiner

Aritnmeti over abelian lacksquare Fix a prime $p\geq 5$. The p-Selmer group is a subgroup of $H^1(\mathbb{Q}, E[p^\infty])$.

Introduct

Initial settings

Euler system machine

over abelian extension ■ Fix a prime $p \ge 5$. The p-Selmer group is a subgroup of $H^1(\mathbb{Q}, E[p^{\infty}])$.

■ It fits in the exact sequence

$$0 \longrightarrow E(\mathbb{Q}) \otimes \mathbb{Q}_p/\mathbb{Z}_p \longrightarrow \operatorname{Sel}(\mathbb{Q}, E[p^{\infty}]) \longrightarrow \operatorname{III}(E)[p^{\infty}] \longrightarrow 0$$

■ Fix a prime $p \ge 5$. The p-Selmer group is a subgroup of $H^1(\mathbb{Q}, E[p^{\infty}])$.

It fits in the exact sequence

$$0 \longrightarrow E(\mathbb{Q}) \otimes \mathbb{Q}_p/\mathbb{Z}_p \longrightarrow \mathrm{Sel}(\mathbb{Q}, E[p^{\infty}]) \longrightarrow \mathrm{III}(E)[p^{\infty}] \longrightarrow 0$$

■ Conjecturally, $\mathrm{III}(E)$ is a finite group, so $\mathrm{Sel}(\mathbb{Q}, E[p^{\infty}])$ detects r_{alg} :

$$E(\mathbb{Q})\otimes \mathbb{Q}_p/\mathbb{Z}_p=(\mathbb{Q}_p/\mathbb{Z}_p)^{r_{\mathrm{alg}}};\quad \mathrm{Sel}(\mathbb{Q},E[p^\infty])=(\mathbb{Q}_p/\mathbb{Z}_p)^{r_{\mathrm{sel}}}\oplus (\mathrm{finite})$$

Initial

over abelian extensions ■ Fix a prime $p \ge 5$. The p-Selmer group is a subgroup of $H^1(\mathbb{Q}, E[p^\infty])$.

It fits in the exact sequence

$$0 \longrightarrow E(\mathbb{Q}) \otimes \mathbb{Q}_p/\mathbb{Z}_p \longrightarrow \mathrm{Sel}(\mathbb{Q}, E[p^{\infty}]) \longrightarrow \mathrm{III}(E)[p^{\infty}] \longrightarrow 0$$

■ Conjecturally, III(E) is a finite group, so $\text{Sel}(\mathbb{Q}, E[p^{\infty}])$ detects r_{alg} :

$$E(\mathbb{Q})\otimes \mathbb{Q}_p/\mathbb{Z}_p=(\mathbb{Q}_p/\mathbb{Z}_p)^{r_{\mathrm{alg}}};\quad \mathrm{Sel}(\mathbb{Q},E[p^\infty])=(\mathbb{Q}_p/\mathbb{Z}_p)^{r_{\mathrm{sel}}}\oplus (\mathrm{finite})$$

■ In this talk, we will assume that III(E) is finite, so $r_{alg} = r_{sel}$.

Initial settings

Euler system machiner

over abelian

Introduc

Initial settings

Euler system

Arithmet over abelian

lacktriangle The goal is to group the L-values in an element of a group algebra.

Initial

Arithmeti over abelian extension

- The goal is to group the *L*-values in an element of a group algebra.
- Let χ be a Dirichlet character modulo n:

$$\chi: (\mathbb{Z}/n\mathbb{Z})^{\times} \to \mathbb{C}^{\times}$$

■ We consider χ as a character of $\mathcal{G}_n := \operatorname{Gal}(\mathbb{Q}(\zeta_n)/\mathbb{Q})$ via the identification:

$$a \mod n \leftrightarrow \sigma_a : \zeta_n \mapsto \zeta_n^a$$

Initial settings

■ The goal is to group the *L*-values in an element of a group algebra.

■ Let χ be a Dirichlet character modulo n:

$$\chi: (\mathbb{Z}/n\mathbb{Z})^{\times} \to \mathbb{C}^{\times}$$

lacktriangle We consider χ as a character of $\mathcal{G}_n := \mathrm{Gal}(\mathbb{Q}(\zeta_n)/\mathbb{Q})$ via the identification:

a mod
$$n \leftrightarrow \sigma_a : \zeta_n \mapsto \zeta_n^a$$

■ We define the idempotent element

$$e_\chi := \sum_{a \in (\mathbb{Z}/c)^{ imes}} \chi(a) \sigma_a \in \overline{\mathbb{Q}}_p[\mathcal{G}_n]$$

lacktriangle The goal is to group the L-values in an element of a group algebra.

■ Let χ be a Dirichlet character modulo n:

$$\chi: (\mathbb{Z}/n\mathbb{Z})^{\times} \to \mathbb{C}^{\times}$$

■ We consider χ as a character of $\mathcal{G}_n := \operatorname{Gal}(\mathbb{Q}(\zeta_n)/\mathbb{Q})$ via the identification:

a mod
$$n \leftrightarrow \sigma_a : \zeta_n \mapsto \zeta_n^a$$

■ We define the idempotent element

$$\mathsf{e}_\chi := \sum_{\mathsf{a} \in (\mathbb{Z}/c)^ imes} \chi(\mathsf{a}) \sigma_\mathsf{a} \in \overline{\mathbb{Q}}_p[\mathcal{G}_n]$$

Stickelberger element

$$\Theta_n := \sum_{\chi \bmod n} \frac{L(E,\chi,1)}{\tau(\chi)\Omega^{\pm}} e_\chi \in \overline{\mathbb{Q}}_p[\mathcal{G}_n]$$

Initial settings

Arithmeti over abelian extensions

L-functions Mordell-Weil group $L(E,\chi,s)$ $E(\mathbb{Q})$ $\Theta_n = \sum_{\chi} \frac{L(E,\chi,1)}{\tau(\chi)\Omega} e_{\chi}$ $E(\mathbb{Q})_{/\mathbb{Z}_p} \hookrightarrow \operatorname{Sel} \longrightarrow \operatorname{III}$ Stickelberger elements Selmer group $\Theta_n \in \overline{\mathbb{Q}_p} \left[\operatorname{Gal}_{\mathbb{Q}(\zeta_n)/\mathbb{Q}} \right]$ $Sel(\mathbb{Q}, E[p^{\infty}])$

Alberto Angurel Andres

Kato's Euler system

L-functions Mordell-Weil group $L(E,\chi,s)$ $E(\mathbb{Q})$ $\Theta_n = \sum_{\chi} \frac{L(E,\chi,1)}{\tau(\chi)\Omega} e_{\chi}$ $E(\mathbb{Q})_{/\mathbb{Z}_p} \hookrightarrow \operatorname{Sel}$ Stickelberger elements Selmer group $\Theta_n \in \overline{\mathbb{Q}_p} \left[\operatorname{Gal}_{\mathbb{Q}(\zeta_n)/\mathbb{Q}} \right]$ $Sel(\mathbb{Q}, E[p^{\infty}])$ Kato's Euler system Z_F

Kato's Euler system

nitial

Euler system machine

over abelian extensions

Euler systems

An Euler system is a collection

$$\{z_F \in H^1(F, T_p E) : F/\mathbb{Q} \text{ finite}\}$$

satisfying the following condition:

Euler systems

An Euler system is a collection

$$\{z_F \in H^1(F, T_p E) : F/\mathbb{Q} \text{ finite}\}$$

satisfying the following condition: for every F'/F, there is a corestriction map

$$\mathrm{cor}:\ H^1(F',T_pE)\to H^1(F,T_pE)$$

Euler systems

An Euler system is a collection

$$\left\{z_F\in H^1(F,T_pE):\ F/\mathbb{Q}\ \mathrm{finite}\right\}$$

satisfying the following condition: for every F'/F, there is a corestriction map

$$\mathrm{cor}:\ H^1(F',T_pE)\to H^1(F,T_pE)$$

We impose

$$\operatorname{cor}(z_{F'}) = \left(\prod_{\ell \in \operatorname{Ram}(F'/\mathbb{Q}) \setminus \operatorname{Ram}(/\mathbb{Q})} \operatorname{Euler}(\ell)
ight) z_F$$

$$\left\{z_F \in H^1(F, T_p E) : F/\mathbb{Q} \text{ finite}\right\}$$

satisfying the following condition: for every F'/F, there is a corestriction map

$$\mathrm{cor}:\ H^1(F',T_pE)\to H^1(F,T_pE)$$

We impose

$$\operatorname{cor}(z_{F'}) = \left(\prod_{\ell \in \operatorname{Ram}(F'/\mathbb{Q}) \setminus \operatorname{Ram}(/\mathbb{Q})} \operatorname{Euler}(\ell) \right) z_F$$

Kato's zeta elements

Kato constructed zeta elements $z_F \in H^1(F, T_pE)$ satisfying the Euler systems relation.

Kato's Euler system

Euler systems

An Euler system is a collection

$$\left\{z_F\in H^1(F,T_pE):\ F/\mathbb{Q}\ \mathrm{finite}\right\}$$

satisfying the following condition: for every F'/F, there is a corestriction map

$$\mathrm{cor}:\ H^1(F',T_pE)\to H^1(F,T_pE)$$

We impose

$$\operatorname{cor}(z_{F'}) = \left(\prod_{\ell \in \operatorname{Ram}(F'/\mathbb{Q}) \setminus \operatorname{Ram}(/\mathbb{Q})} \operatorname{Euler}(\ell) \right) z_F$$

Kato's zeta elements

Kato constructed zeta elements $z_F \in H^1(F, T_P E)$ satisfying the Euler systems relation. They are linked to the special L-values via the dual exponential map. For $F = \mathbb{Q}(\zeta_n)$, we have

$$\exp^*: H^1(F, T_p E) \to \mathbb{Q}(\zeta_n), \quad \boxed{z_{\mathbb{Q}(\zeta_n) \mapsto (*)\Theta_n(\zeta_n)}}$$

Kato's Euler system

L-functions Mordell-Weil group $L(E,\chi,s)$ $E(\mathbb{Q})$ $\Theta_n = \sum_{\chi} \frac{L(E,\chi,1)}{\tau(\chi)\Omega} e_{\chi}$ $E(\mathbb{Q})_{/\mathbb{Z}_p} \hookrightarrow \operatorname{Sel}$ Stickelberger elements Selmer group $\Theta_n \in \overline{\mathbb{Q}_p} \left[\operatorname{Gal}_{\mathbb{Q}(\zeta_n)/\mathbb{Q}} \right]$ $Sel(\mathbb{Q}, E[p^{\infty}])$ $\exp^* \left(z_{\mathbb{Q}(\zeta_n)} \right) \leftrightarrow \Theta_n(\zeta_n)$ Kato's Euler system $z_F \in H^1(F, T_pE)$

Initial settings Fuler

Euler system machiner

over abelian

Introductio

Initial settings

Euler system machiner

Arithmeti over abelian ■ Euler systems: collection of cohomology classes in a tower of number fields.

nitial

Euler system machiner

Arithmeti over abelian

- Euler systems: collection of cohomology classes in a tower of number fields.
- Kolyvagin systems: collection of cohomology classes, all of them in $H^1(\mathbb{Q}, T_pE)$.

ntrodu nitial

Euler system machiner

over abelian

- Euler systems: collection of cohomology classes in a tower of number fields.
- Kolyvagin systems: collection of cohomology classes, all of them in $H^1(\mathbb{Q}, T_pE)$.
- For every square-free n, there is a $\kappa_n \in H^1(\mathbb{Q}, T_pE)$ such that

Initial settings

Euler system machiner

over abelian ■ Euler systems: collection of cohomology classes in a tower of number fields.

■ Kolyvagin systems: collection of cohomology classes, all of them in $H^1(\mathbb{Q}, T_p E)$.

- For every square-free n, there is a $\kappa_n \in H^1(\mathbb{Q}, T_pE)$ such that
 - \bullet κ_n is unramified for good reduction primes not dividing np.
 - For every n and every prime ℓ not dividing n, we impose a condition $\kappa_n \leftrightarrow \kappa_{n\ell}$.

Introduc Initial settings

Euler system machiner

over abelian ■ Euler systems: collection of cohomology classes in a tower of number fields.

■ Kolyvagin systems: collection of cohomology classes, all of them in $H^1(\mathbb{Q}, T_pE)$.

■ For every square-free n, there is a $\kappa_n \in H^1(\mathbb{Q}, T_pE)$ such that

- \bullet κ_n is unramified for good reduction primes not dividing np.
- For every n and every prime ℓ not dividing n, we impose a condition $\kappa_n \leftrightarrow \kappa_{n\ell}$.
- These conditions are very rigid: there is only one Kolyvagin system up to constant.

Initial settings Fuler

Euler system machinery

over abelian

Introductio

Initial settings

Euler system machiner

Arithmet over abelian

 \blacksquare Kolyvagin derivative: descent machinery to obtain cohomology classes over $\mathbb{Q}.$

- Kolyvagin derivative: descent machinery to obtain cohomology classes over ℚ.
- For every prime ℓ , fix a generator $\sigma_{\ell} \in \operatorname{Gal}(\mathbb{Q}(\zeta_{\ell})/\mathbb{Q}) =: \mathcal{G}_{\ell}$. The Kolyvagin derivative operator is defined as

$$D_\ell := \sum_{i=1}^{\ell-1} i \sigma_\ell^i \in \mathbb{Z}_p[\operatorname{Gal}(\mathbb{Q}(\zeta_\ell/\mathbb{Q}))]$$

nitial settings

Euler system machinery

over abelian extensions ■ Kolyvagin derivative: descent machinery to obtain cohomology classes over Q.

■ For every prime ℓ , fix a generator $\sigma_{\ell} \in \operatorname{Gal}(\mathbb{Q}(\zeta_{\ell})/\mathbb{Q}) =: \mathcal{G}_{\ell}$. The Kolyvagin derivative operator is defined as

$$D_\ell := \sum_{i=1}^{\ell-1} i \sigma^i_\ell \in \mathbb{Z}_p[\operatorname{Gal}(\mathbb{Q}(\zeta_\ell/\mathbb{Q}))]$$

 \blacksquare For a square-free integer n, let

$$D_n := \prod_{\ell \mid n} D_\ell$$

Initial settings

Euler system machinery

over abelian extensions lacktriangle Kolyvagin derivative: descent machinery to obtain cohomology classes over \mathbb{Q} .

■ For every prime ℓ , fix a generator $\sigma_{\ell} \in \operatorname{Gal}(\mathbb{Q}(\zeta_{\ell})/\mathbb{Q}) =: \mathcal{G}_{\ell}$. The Kolyvagin derivative operator is defined as

$$D_\ell := \sum_{i=1}^{\ell-1} i \sigma_\ell^i \in \mathbb{Z}_
ho[\operatorname{Gal}(\mathbb{Q}(\zeta_\ell/\mathbb{Q}))]$$

 \blacksquare For a square-free integer n, let

$$D_n := \prod_{\ell \mid n} D_\ell$$

lacktriangledown 'Fact': $D_n z_{Q(\zeta_n)} \in H^1(\mathbb{Q}(\zeta_n), T_p E)^{\mathcal{G}_n}$

 \blacksquare Kolyvagin derivative: descent machinery to obtain cohomology classes over $\mathbb{Q}.$

■ For every prime ℓ , fix a generator $\sigma_{\ell} \in \operatorname{Gal}(\mathbb{Q}(\zeta_{\ell})/\mathbb{Q}) =: \mathcal{G}_{\ell}$. The Kolyvagin derivative operator is defined as

$$D_\ell := \sum_{i=1}^{\ell-1} i \sigma_\ell^i \in \mathbb{Z}_p[\operatorname{Gal}(\mathbb{Q}(\zeta_\ell/\mathbb{Q}))]$$

 \blacksquare For a square-free integer n, let

$$D_n := \prod_{\ell \mid n} D_\ell$$

- lacktriangledown 'Fact': $D_n z_{Q(\zeta_n)} \in H^1(\mathbb{Q}(\zeta_n), T_p E)^{\mathcal{G}_n}$
- $\qquad \qquad H^1(\mathbb{Q},T_pE) \xrightarrow{\operatorname{res}} H^1(\mathbb{Q}(\zeta_n),T_pE)^{\mathcal{G}_n} \ \text{ is an isomorphism (under assumptions)}.$

Kolyvagin derivatives

■ Kolyvagin derivative: descent machinery to obtain cohomology classes over Q.

■ For every prime ℓ , fix a generator $\sigma_{\ell} \in \operatorname{Gal}(\mathbb{Q}(\zeta_{\ell})/\mathbb{Q}) =: \mathcal{G}_{\ell}$. The Kolyvagin derivative operator is defined as

$$D_\ell := \sum_{i=1}^{\ell-1} i \sigma_\ell^i \in \mathbb{Z}_{
ho}[\mathrm{Gal}(\mathbb{Q}(\zeta_\ell/\mathbb{Q}))]$$

 \blacksquare For a square-free integer n, let

$$D_n := \prod_{\ell \mid n} D_\ell$$

- 'Fact': $D_n z_{Q(\zeta_n)} \in H^1(\mathbb{Q}(\zeta_n), T_p E)^{\mathcal{G}_n}$
- $H^1(\mathbb{Q}, T_p E) \xrightarrow{\operatorname{res}} H^1(\mathbb{Q}(\zeta_n), T_p E)^{\mathcal{G}_n} \text{ is an isomorphism (under assumptions)}.$

$$\kappa_n := \operatorname{res}^{-1} \left(D_n z_{\mathbb{Q}(\zeta_n)} \right)$$

Kolyvagin derivatives

- Kolyvagin derivative: descent machinery to obtain cohomology classes over Q.
- For every prime ℓ , fix a generator $\sigma_{\ell} \in \operatorname{Gal}(\mathbb{Q}(\zeta_{\ell})/\mathbb{Q}) =: \mathcal{G}_{\ell}$. The Kolyvagin derivative operator is defined as

$$D_\ell := \sum_{i=1}^{\ell-1} i \sigma_\ell^i \in \mathbb{Z}_p[\operatorname{Gal}(\mathbb{Q}(\zeta_\ell/\mathbb{Q}))]$$

 \blacksquare For a square-free integer n, let

$$D_n := \prod_{\ell \mid n} D_\ell$$

- 'Fact': $D_n z_{Q(\zeta_n)} \in H^1(\mathbb{Q}(\zeta_n), T_p E)^{\mathcal{G}_n}$
- $H^1(\mathbb{Q}, T_p E) \xrightarrow{\operatorname{res}} H^1(\mathbb{Q}(\zeta_n), T_p E)^{\mathcal{G}_n}$ is an isomorphism (under assumptions).

$$\kappa_n := \operatorname{res}^{-1} \left(D_n z_{\mathbb{Q}(\zeta_n)} \right)$$

From Euler systems to Kolyvagin systems

The Kolyvagin derivative defines a map

$$\Phi : \{\text{Euler systems}\} \rightarrow \{\text{Kolyvagin systems}\}$$

satisfying that, if $\Phi(z) = \kappa$, then $\kappa_1 = z_{\mathbb{Q}}$.

Kolyvagin derivatives

Initial settings

Euler system machiner

over abelian extensions

Initial settings

Euler system machinery

over abelian extensions

nitial

Euler system machiner

Arithmetic over abelian ■ By the general theory of Kolyvagin systems

$$H^1(\mathbb{Q},T_pE) \xrightarrow{\quad \text{loc} \quad} H^1(\mathbb{Q}_p,T_pE) \xrightarrow{\quad \sim \quad} \mathbb{Z}_p$$

Introduc

Euler system machiner

over abelian ■ By the general theory of Kolyvagin systems

$$H^1(\mathbb{Q},T_pE) \xrightarrow{\quad \text{loc} \quad} H^1(\mathbb{Q}_p,T_pE) \xrightarrow{\quad \sim \quad} \mathbb{Z}_p$$

• We can use $p^{\alpha} \exp^*$ for some integer α , which is related to the Euler factor at p.

■ By the general theory of Kolyvagin systems

$$H^1(\mathbb{Q},T_pE) \stackrel{\mathrm{loc}}{-\!\!\!-\!\!\!-\!\!\!-} H^1(\mathbb{Q}_p,T_pE) \stackrel{\sim}{-\!\!\!\!-\!\!\!\!-} \mathbb{Z}_p$$

- We can use $p^{\alpha} \exp^*$ for some integer α , which is related to the Euler factor at p.
- By the interpolation property of Kato's Euler system,

$$\delta_n := p^{\alpha} \exp^*(\kappa_n) = D_n \Theta_n(\zeta_n)$$

Initial settings By the general theory of Kolyvagin systems

$$H^1(\mathbb{Q},T_pE) \xrightarrow{\quad \mathrm{loc} \quad} H^1(\mathbb{Q}_p,T_pE) \xrightarrow{\quad \sim \quad} \mathbb{Z}_p$$

- We can use $p^{\alpha} \exp^*$ for some integer α , which is related to the Euler factor at p.
- By the interpolation property of Kato's Euler system,

$$\delta_n := p^{\alpha} \exp^*(\kappa_n) = D_n \Theta_n(\zeta_n)$$

■ Explicitly, fix a primitive root η_ℓ of $(\mathbb{Z}/\ell)^{\times}$ for every prime divisor ℓ of n. Then

$$\delta_n = \sum_{a \in (\mathbb{Z}/n)^{\times}} \left[\frac{a}{n} \right]^+ \prod_{\ell \mid n} \left(\log_{\eta_{\ell}}(a) \right) \in \mathbb{Z}_{(p)}$$

■ By the general theory of Kolyvagin systems

$$H^1(\mathbb{Q},T_pE) \stackrel{\mathrm{loc}}{-\!\!\!-\!\!\!-\!\!\!-} H^1(\mathbb{Q}_p,T_pE) \stackrel{\sim}{-\!\!\!\!-\!\!\!\!-} \mathbb{Z}_p$$

- We can use $p^{\alpha} \exp^*$ for some integer α , which is related to the Euler factor at p.
- By the interpolation property of Kato's Euler system,

$$\delta_n := p^{\alpha} \exp^*(\kappa_n) = D_n \Theta_n(\zeta_n)$$

■ Explicitly, fix a primitive root η_ℓ of $(\mathbb{Z}/\ell)^{\times}$ for every prime divisor ℓ of n. Then

$$\delta_n = \sum_{a \in (\mathbb{Z}/n)^{\times}} \left[\frac{a}{n}\right]^+ \prod_{\ell \mid n} \left(\log_{\eta_{\ell}}(a)\right) \in \mathbb{Z}_{(p)}$$

■ These quantities are known as Kurihara numbers.

■ By the general theory of Kolyvagin systems

$$H^1(\mathbb{Q},T_{\rho}E) \xrightarrow{\quad \mathrm{loc} \quad} H^1(\mathbb{Q}_{\rho},T_{\rho}E) \xrightarrow{\quad \sim \quad} \mathbb{Z}_{\rho}$$

- We can use $p^{\alpha} \exp^*$ for some integer α , which is related to the Euler factor at p.
- By the interpolation property of Kato's Euler system,

$$\delta_n := p^{\alpha} \exp^*(\kappa_n) = D_n \Theta_n(\zeta_n)$$

Explicitly, fix a primitive root η_{ℓ} of $(\mathbb{Z}/\ell)^{\times}$ for every prime divisor ℓ of n. Then

$$\delta_n = \sum_{a \in (\mathbb{Z}/n)^{\times}} \left[\frac{a}{n}\right]^+ \prod_{\ell \mid n} \left(\log_{\eta_{\ell}}(a)\right) \in \mathbb{Z}_{(p)}$$

- These quantities are known as Kurihara numbers.
- They depend on η_{ℓ} , but their *p*-adic valuation is independent of these choices.

ntroduct nitial settings

Euler system machiner

over abelian extensions

Initial settings

Euler system machiner

over abelian extensions

Introductio

Initial settings

Euler system machiner

Arithmet over abelian

lacksquare For every square-free n, we denote by u(n) the number of prime divisors of n.

nitial

- For every square-free n, we denote by $\nu(n)$ the number of prime divisors of n.
- For every $i \in \mathbb{Z}_{>0}$, define

$$\theta_i = \langle \{\delta_n : \ \nu(n) = i\} \rangle \subset \mathbb{Z}_p$$

Initial settings

Euler system machiner

over abelian extensions

- For every square-free n, we denote by $\nu(n)$ the number of prime divisors of n.
- For every $i \in \mathbb{Z}_{\geq 0}$, define

$$\theta_i = \langle \{\delta_n : \ \nu(n) = i\} \rangle \subset \mathbb{Z}_p$$

■ These ideals are related to the Fitting ideals of the Selmer group.

Initial settings

Euler system machiner

over abelian extensions

- For every square-free n, we denote by $\nu(n)$ the number of prime divisors of n.
- For every $i \in \mathbb{Z}_{\geq 0}$, define

$$\theta_i = \langle \{\delta_n : \ \nu(n) = i\} \rangle \subset \mathbb{Z}_p$$

■ These ideals are related to the Fitting ideals of the Selmer group.

Initial settings

Euler system machinery

Arithmeti over abelian

- For every square-free n, we denote by $\nu(n)$ the number of prime divisors of n.
- For every $i \in \mathbb{Z}_{\geq 0}$, define

$$\theta_i = \langle \{\delta_n : \ \nu(n) = i\} \rangle \subset \mathbb{Z}_p$$

■ These ideals are related to the Fitting ideals of the Selmer group.

Fitting ideals

Let M be a finitely generated \mathbb{Z}_p -module. The structre theorem gives an isomorphism

$$M \cong \mathbb{Z}/p^{\alpha_1} \times \cdots \times \mathbb{Z}/p^{\alpha_r}$$

where $\alpha_i \in \mathbb{N} \cup \infty$. Assume $\alpha_1 \leq \cdots \leq \alpha_r$.

■ For every square-free n, we denote by $\nu(n)$ the number of prime divisors of n.

■ For every $i \in \mathbb{Z}_{\geq 0}$, define

$$\theta_i = \langle \{\delta_n : \ \nu(n) = i\} \rangle \subset \mathbb{Z}_p$$

■ These ideals are related to the Fitting ideals of the Selmer group.

Fitting ideals

Let M be a finitely generated \mathbb{Z}_p -module. The structre theorem gives an isomorphism

$$M \cong \mathbb{Z}/p^{\alpha_1} \times \cdots \times \mathbb{Z}/p^{\alpha_r}$$

where $\alpha_i \in \mathbb{N} \cup \infty$. Assume $\alpha_1 \leq \cdots \leq \alpha_r$. Then

$$\begin{cases} \operatorname{Fitt}^{i}(M) = \prod_{k=1}^{r-i} \rho^{\alpha_{k}} & \text{if } 0 \leq i < r \\ \operatorname{Fitt}^{i}(M) = \mathbb{Z}_{p} & \text{if } i \geq r \end{cases}$$

Introduct Initial settings

Euler system machinery

over abelian extensions

Main result

uler ystem

Arithmet over abelian

Theorem (C-H. Kim, 2025)

Let $p \ge 5$ satisfying that

- $G_{\mathbb{O}}$ acts surjectively on T_pE .
- p divides neither the Tamagawa numbers nor the Manin constant
- $E(\mathbb{Q}_p)$ contains no p-torsion.
- The Iwasawa main conjecture (IMC) holds for E.

Theorem (C-H. Kim, 2025)

Let $p \ge 5$ satisfying that

- $G_{\mathbb{O}}$ acts surjectively on T_pE .
- p divides neither the Tamagawa numbers nor the Manin constant
- $E(\mathbb{Q}_p)$ contains no p-torsion.
- The Iwasawa main conjecture (IMC) holds for E.

Then,

$$\begin{cases} \theta_i = \operatorname{Fitt}^i(\operatorname{Sel}(\mathbb{Q}, E[\rho^{\infty}])^{\vee}) & \text{if } (-1)^i = \omega(E) \\ \theta_i = 0 & \text{if } (-1)^i \neq \omega(E) \end{cases}$$

Theorem (C-H. Kim, 2025)

Let $p \ge 5$ satisfying that

- $G_{\mathbb{O}}$ acts surjectively on T_pE .
- p divides neither the Tamagawa numbers nor the Manin constant
- $E(\mathbb{Q}_p)$ contains no p-torsion.
- The Iwasawa main conjecture (IMC) holds for E.

Then,

$$\begin{cases} \theta_i = \operatorname{Fitt}^i(\operatorname{Sel}(\mathbb{Q}, E[p^{\infty}])^{\vee}) & \text{ if } (-1)^i = \omega(E) \\ \theta_i = 0 & \text{ if } (-1)^i \neq \omega(E) \end{cases}$$

Remark

The above theorem, together with the Cassels-Tate pairing, can determine the full structure of the Selmer group.

Theorem (C-H. Kim, 2025)

Let $p \ge 5$ satisfying that

- $G_{\mathbb{O}}$ acts surjectively on T_pE .
- p divides neither the Tamagawa numbers nor the Manin constant
- $E(\mathbb{Q}_p)$ contains no p-torsion.
- The Iwasawa main conjecture (IMC) holds for E.

Then,

$$\begin{cases} \theta_i = \operatorname{Fitt}^i(\operatorname{Sel}(\mathbb{Q}, E[\rho^{\infty}])^{\vee}) & \text{ if } (-1)^i = \omega(E) \\ \theta_i = 0 & \text{ if } (-1)^i \neq \omega(E) \end{cases}$$

Remark

The above theorem, together with the Cassels-Tate pairing, can determine the full structure of the Selmer group.

Remark

If $\mathrm{III}(E)$ is finite, the algebraic rank is the minimal i such that there exists a square-free n_0 such that $\delta_{n_0} \neq 0$ and $\nu(n_0) = i$.

- $G_{\mathbb{Q}}$ acts surjectively on T_pE .
- p divides neither the Tamagawa numbers nor the Manin constant
- $E(\mathbb{Q}_p)$ contains no p-torsion.
- The Iwasawa main conjecture (IMC) holds for E.

Then,

$$\begin{cases} \theta_i = \operatorname{Fitt}^i(\operatorname{Sel}(\mathbb{Q}, E[p^{\infty}])^{\vee}) & \text{if } (-1)^i = \omega(E) \\ \theta_i = 0 & \text{if } (-1)^i \neq \omega(E) \end{cases}$$

Remark

The above theorem, together with the Cassels-Tate pairing, can determine the full structure of the Selmer group.

Remark

If $\mathrm{III}(E)$ is finite, the algebraic rank is the minimal i such that there exists a square-free n_0 such that $\delta_{n_0} \neq 0$ and $\nu(n_0) = i$. In this situation, $\#\mathrm{III}(E)[p^\infty] \sim \delta_{n_0}$.

Let $p \geq 5$ satisfying that

- $G_{\mathbb{Q}}$ acts surjectively on T_pE .
- p divides neither the Tamagawa numbers nor the Manin constant
- $E(\mathbb{Q}_p)$ contains no p-torsion.
- The Iwasawa main conjecture (IMC) holds for E.

Then,

$$\begin{cases} \theta_i = \operatorname{Fitt}^i(\operatorname{Sel}(\mathbb{Q}, E[p^{\infty}])^{\vee}) & \text{if } (-1)^i = \omega(E) \\ \theta_i = 0 & \text{if } (-1)^i \neq \omega(E) \end{cases}$$

Remark

The above theorem, together with the Cassels-Tate pairing, can determine the full structure of the Selmer group.

Remark

If $\mathrm{III}(E)$ is finite, the algebraic rank is the minimal i such that there exists a square-free n_0 such that $\delta_{n_0} \neq 0$ and $\nu(n_0) = i$. In this situation, $\#\mathrm{III}(E)[p^\infty] \sim \delta_{n_0}$.

The values δ_n for other square-free n will determine the group structure of $\coprod(E)[p^{\infty}]$.

nitial

Euler system

Arithmeti over abelian extension

Assumptions on K/\mathbb{Q}

- The degree $[K : \mathbb{Q}]$ is prime to p.
- K/\mathbb{Q} is unramified at p and at every bad prime of E.
- We call c the conductor of K/\mathbb{Q} .

Initial settings Euler

Arithmetic over abelian extensions

nitial ettings Euler

Arithmetic over abelian extensions

Assumptions on K/\mathbb{Q}

- The degree $[K : \mathbb{Q}]$ is prime to p.
- K/\mathbb{Q} is unramified at p and at every bad prime of E.
- We call c the conductor of K/\mathbb{Q} .

Splitting the Selmer group

$$\operatorname{Sel}(K,E[p^{\infty}]) = \bigoplus_{\gamma} \operatorname{Sel}(\mathbb{Q},E[p^{\infty}] \otimes \chi)$$

We can study the different χ -parts independently.

Initial settings Euler

Arithmetic over abelian extensions

Assumptions on K/\mathbb{Q}

- The degree $[K : \mathbb{Q}]$ is prime to p.
- K/\mathbb{Q} is unramified at p and at every bad prime of E.
- We call c the conductor of K/\mathbb{Q} .

Splitting the Selmer group

$$\operatorname{Sel}(K, E[p^{\infty}]) = ' \bigoplus_{\gamma} \operatorname{Sel}(\mathbb{Q}, E[p^{\infty}] \otimes \chi)$$

We can study the different χ -parts independently.

Generator of $Gal(\mathbb{Q}(\zeta_{cn})/\mathbb{Q})$

- Problem: when c is not square-free, then ζ_{cn} do not generate $\mathbb{Q}(\zeta_{cn})$ as a $\mathbb{Q}_p[\mathcal{G}_{cn}]$ -module.
- Solution: Substitute

$$\zeta_{cn} \mapsto \sum_{\widetilde{cn}|d|cn} \zeta_d$$

nitial settings Euler

Arithmetic over abelian extensions

Splitting the Selmer group

$$\operatorname{Sel}(K, E[p^{\infty}]) = \bigoplus_{\chi} \operatorname{Sel}(\mathbb{Q}, E[p^{\infty}] \otimes \chi)$$

We can study the different χ -parts independently.

Generator of $Gal(\mathbb{Q}(\zeta_{cn})/\mathbb{Q})$

- Problem: when c is not square-free, then ζ_{cn} do not generate $\mathbb{Q}(\zeta_{cn})$ as a $\mathbb{Q}_p[\mathcal{G}_{cn}]$ -module.
- Solution: Substitute

$$\zeta_{cn}\mapsto\sum_{\widetilde{cn}|d|cn}\zeta_d$$

Twisted Kurihara numbers

Twisted Kato's Euler system \rightarrow twisted Kurihara numbers

$$\delta_{n,\chi} = \sum_{a \in (\mathbb{Z}/cn)^*} \chi(a) \left[\frac{a}{n}\right]^{\chi(-1)} \prod \left(\log_{\eta_{\ell}}(a)\right)$$

Initial settings Euler

Arithmetic over abelian extensions

Main result over abelian extensions

Initial settings

Arithmeti over abelian

Theorem (A., 2025)

Let $p \geq 5$ satisfying that

- K/\mathbb{Q} has degree prime to p and is unramified at every bad prime of E.
- $G_{\mathbb{O}}$ acts surjectively on $T_{p}E$.
- p divides neither the Tamagawa numbers (over K) nor the Manin constant
- $E(K_{\mathfrak{p}})$ contains no p-torsion for every $\mathfrak{p} \mid p$.
- The Iwasawa main conjecture (IMC) holds for f_{χ} .

Main result over abelian extensions

nitial ettings Euler vstem

Arithmetic over abelian extensions

Theorem (A., 2025)

Let $p \ge 5$ satisfying that

- K/\mathbb{Q} has degree prime to p and is unramified at every bad prime of E.
- $G_{\mathbb{O}}$ acts surjectively on T_pE .
- p divides neither the Tamagawa numbers (over K) nor the Manin constant
- $E(K_{\mathfrak{p}})$ contains no p-torsion for every $\mathfrak{p} \mid p$.
- The Iwasawa main conjecture (IMC) holds for f_{χ} .

We want to compute the Fitting ideals of the χ -part of $\mathrm{Sel}(K, E[p^{\infty}])^{\vee}$. We have two cases:

Theorem (A., 2025)

Let $p \ge 5$ satisfying that

- K/\mathbb{Q} has degree prime to p and is unramified at every bad prime of E.
- $G_{\mathbb{Q}}$ acts surjectively on T_pE .
- lacktriangleright p divides neither the Tamagawa numbers (over K) nor the Manin constant
- $E(K_{\mathfrak{p}})$ contains no *p*-torsion for every $\mathfrak{p} \mid p$.
- The Iwasawa main conjecture (IMC) holds for f_{χ} .

We want to compute the Fitting ideals of the χ -part of $\mathrm{Sel}(K, E[p^\infty])^\vee$. We have two cases:

$$\blacksquare \boxed{\chi = \overline{\chi}}$$

$$\begin{cases} \theta_i = \operatorname{Fitt}^i(\operatorname{Sel}(\mathbb{Q}, E[p^{\infty}])^{\vee}_{\chi}) & \text{ if } (-1)^i = \omega(E) \\ \theta_i = 0 & \text{ if } (-1)^i \neq \omega(E) \end{cases}$$

Theorem (A., 2025)

Let $p \geq 5$ satisfying that

- K/\mathbb{Q} has degree prime to p and is unramified at every bad prime of E.
- $G_{\mathbb{Q}}$ acts surjectively on T_pE .
- lacktriangledown p divides neither the Tamagawa numbers (over K) nor the Manin constant
- $E(K_{\mathfrak{p}})$ contains no p-torsion for every $\mathfrak{p} \mid p$.
- The Iwasawa main conjecture (IMC) holds for f_{χ} .

We want to compute the Fitting ideals of the χ -part of $\mathrm{Sel}(K, E[p^{\infty}])^{\vee}$. We have two cases:

$$\blacksquare \quad \boxed{\chi = \overline{\chi}}$$

$$\begin{cases} \theta_i = \operatorname{Fitt}^i(\operatorname{Sel}(\mathbb{Q}, E[\rho^{\infty}])_{\chi}^{\vee}) & \text{ if } (-1)^i = \omega(E) \\ \theta_i = 0 & \text{ if } (-1)^i \neq \omega(E) \end{cases}$$

$$\blacksquare \quad \boxed{\chi \neq \overline{\chi}}$$

$$\theta_i = \operatorname{Fitt}^i(\operatorname{Sel}(, E[p^{\infty}])_{\chi}^{\vee}) \ \forall i$$

Thank you for your attention!

ntroduc nitial ettings

Euler system machine

over abelian extensions

