Kurihara numbers over abelian extensions

Alberto Angurel Andrés

University of Nottingham

July 9, 2024

- BSD relates the leading term of the *L*-function of an elliptic curve E/\mathbb{Q} to the rank and the order of Tate-Shafarevich.
- Kurihara numbers are some quantities related to *L*-values that determine the structure of Tate-Shafarevich.
- Kurihara numbers are defined from the modular symbols of the elliptic curve.

$$\left[\frac{a}{n}\right] = 2\pi i \int_{i\infty}^{\frac{a}{n}} f(z) \, dz, \qquad \left[\frac{a}{n}\right]^{\pm} = \frac{1}{2\Omega_E^{\pm}} \left(\left[\frac{a}{n}\right] \pm \left[\frac{-a}{n}\right]\right) \in \mathbb{Q} \in \mathbb{Z}_p$$

 We will generalise the theory to describe the structure of Sel(K, E[p[∞]]) as a Z_p[Gal(K/Q)] for certain abelian extensions K/Q. Choose an elliptic curve E/\mathbb{Q} and a prime number $p \geq 5$ satisfying the following

- (E1) The Manin constant of E is prime to p.
- (E2) The Galois group $G_{\mathbb{Q}}$ acts surjectively on $T_{\rho}E$.
- (E3) $E(\mathbb{Q}_p)$ contains no *p*-torsion.
- (E4) All Tamagawa numbers of *E* are prime to *p*.
- (E5) E satisfies the Iwasawa main conjecture.
- (E6) III is finite.

Kurihara numbers

Definition

• For every $k \in \mathbb{N}$, consider the set of prime numbers \mathcal{P}_k such that

$$\ell \equiv 1 \mod p^k, \qquad a_\ell \equiv \ell+1 \mod p^k$$

- Note that $\mathcal{P}_1 \supset \mathcal{P}_2 \supset \cdots \supset \mathcal{P}_k \supset \cdots$
- Denote by \mathcal{N}_k the set of square free products of primes in \mathcal{P}_k .
- For every $n \in \mathcal{N}_1$, let k_n be the minimum $k \in \mathbb{N}$ such that $n \in \mathcal{N}_k$.

Kurihara numbers

$$\delta_n = \sum_{a \in (\mathbb{Z}/n\mathbb{Z})^*} \left(\left[\frac{a}{n} \right]^+ + \left[\frac{a}{n} \right]^- \right) \prod_{\ell \mid n} \log_{\eta_\ell}(a) \in \mathbb{Z}/p^{k_n} \qquad \delta_1 = \frac{L(E,0)}{\Omega_E^+}$$

Definition

$$\operatorname{ord}(\delta_n) = \max\left\{j \in \mathbb{N} \cup \{0,\infty\} : \delta_n \in p^j\left(\mathbb{Z}/p^{k_n}\right)\right\}$$

Note that $\operatorname{ord}(\delta_n)$ is either less than k_n or ∞ .

Alberto Angurel Andrés

Definition

$$\alpha_i = \min\{ \operatorname{ord}(\delta_n) : n \in \mathcal{N}_1, \nu(n) = i \} \in \mathbb{N} \cup \{0, \infty\}$$

Definition

- r is the minimum i such that α_i is finite.
- s is the minimum i such that α_i is zero.

Theorem

• r is the rank of $E(\mathbb{Q})$.

• III =
$$\left(\frac{\mathbb{Z}}{p^{\frac{\alpha_r - \alpha_{(r+2)}}{2}}}\right)^2 \times \left(\frac{\mathbb{Z}}{p^{\frac{\alpha_{(r+2)} - \alpha_{(r+4)}}{2}}}\right)^2 \times \dots \times \left(\frac{\mathbb{Z}}{p^{\frac{\alpha_{(s-2)} - \alpha_s}{2}}}\right)^2$$

$$E: y^2 + xy = x^3 - x^2 - 1531069681 x - 23060083371235$$

$$\operatorname{ord}_5(\delta_1) = \operatorname{ord}_5\left(\frac{L(E,1)}{\Omega_E^+}\right) = 4 \Rightarrow \quad \operatorname{rank}(E) = 0, \ \# \operatorname{III} = 625 = 5^4$$

Two possibilities

$$\mathrm{III} \approx \mathbb{Z}/5 \times \mathbb{Z}/5 \times \mathbb{Z}/5 \times \mathbb{Z}/5 \quad \mathrm{or} \quad \left| \mathrm{III} \approx \mathbb{Z}/25 \times \mathbb{Z}/25 \right|$$

One can check that $\ell_1 = 191$ and $\ell_2 = 401$ are in \mathcal{P}_1 . We compute $\operatorname{ord}_5(\delta_{\ell_1\ell_2}) = 0$. Assume E/\mathbb{Q} and $p \geq 5$ satisfy the following

- (E1) The Manin constant of E is prime to p.
- (E2) The Galois group $G_{\mathbb{Q}}$ acts surjectively on $T_p E$.
- (E3) $E(\mathbb{Q}_p)$ contains no *p*-torsion.
- (E4) All Tamagawa numbers of E are prime to p.

Theorem (Kim, Sakamoto)

The Iwasawa main conjecture is equivalent to the existence of some $n \in \mathcal{N}_1$ such that $\operatorname{ord}(\delta_n) = 0$.

Assume $(E/\mathbb{Q}, p)$ satisfies (E1)-(E6). Let K/\mathbb{Q} be an abelian extension satisfying the following

- (K1) $d = [K : \mathbb{Q}]$ is prime to p.
- (K2) K/\mathbb{Q} is unramified at p and at every bad prime of E.
- (K3) $E(K_p)$ contains no *p*-torsion for every *p* above *p*.
- (K4) All the Tamagawa numbers of E over K are prime to p.
- (K5) The Iwasawa main conjecture holds true for every twist of T_pE by a character of G = Gal(K/ℚ)
- (K6) III(E/K) is finite.

Remark

$$\operatorname{Sel}(K, E[p^{\infty}]) \sim \bigoplus_{\chi \in \hat{G}} \operatorname{Sel}(\mathbb{Q}, E[p^{\infty}] \otimes \chi)$$

Twisted Kurihara numbers

$$\delta_{n,\chi} = \sum_{\mathbf{a} \in (\mathbb{Z}/cn\mathbb{Z})^*} \chi(\mathbf{a}) \left(\left[\frac{\mathbf{a}}{cn} \right]^+ + \left[\frac{\mathbf{a}}{cn} \right]^- \right) \prod_{\ell \mid n} \log_{\eta_\ell}(\mathbf{a}) \in \mathbb{Z}/p^{k_n}$$

Definition

$$\alpha_{i,\chi} = \min\{ \operatorname{ord}(\delta_{n,\chi}) : n \in \mathcal{N}_1, \, \nu(n) = i \}$$

Definition

- r_{χ} is the minimum *i* such that $\alpha_{i,\chi}$ is finite.
- s_{χ} is the minimum *i* such that $\alpha_{i,\chi}$ is zero.

Case I: $\chi = \overline{\chi}$

•
$$r_{\chi}$$
 is the rank of $E(K)_{\chi}$

• III
$$(E/K)_{\chi} = \left(\frac{O}{p^{\frac{\alpha_r - \alpha_{(r+2)}}{2}}}\right)^2 \times \cdots \times \left(\frac{O}{p^{\frac{\alpha_{(s-2)} - \alpha_s}{2}}}\right)^2$$

Case II: $\chi \neq \overline{\chi}$

•
$$r_{\chi}$$
 is the rank of $E(K)_{\chi}$

•
$$\operatorname{III}(E/K)_{\chi} = \frac{O}{p^{\alpha_r - \alpha_{(r+1)}}} \times \cdots \times \frac{O}{p^{\alpha_{(s-1)} - \alpha_s}}$$

$$E: y^{2} + xy = x^{3} - x^{2} - 1531069681 x - 23060083371235$$

	Rank	χ	#III	New characters
$\mathbb{Q}(\mu_{19})$	0	-	p^{10}	\mathbb{F}_p in characters of order 9
$\mathbb{Q}(\mu_{43})$	0	-	p^4	-
$\mathbb{Q}(\mu_{79})$	1	Quadratic	p^8	\mathbb{F}_p in characters of orders 3 or 6
$\mathbb{Q}(\mu_{83})$	0	-	p^4	-

Example

$$\begin{split} \mathrm{III}(\mathcal{E}/\mathbb{Q}(\mu_{19})) &= \mathbb{Z}_p/p^2 \oplus \mathbb{Z}_p/p^2 \oplus \\ & \left(\frac{1}{3}(\sigma_1 + \sigma_{-1}) - \frac{1}{6}(\sigma_7 + \sigma_{-7} + \sigma_8 + \sigma_{-8})\right) \mathbb{F}_p[\mathrm{Gal}(\mathbb{Q}(\mu_{19})/\mathbb{Q})] \end{split}$$

Thank you for your attention!