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Singularity theorems which prove the existence of incomplete geodesics in
some spacetimes.

Resumen:

La teoŕıa de agujeros negros tiene gran importancia f́ısica, no sólo por el mero hecho de explicar
el funcionamiento de unos objetos recientemente observados en la naturaleza, sino porque en ellos el
espacio-tiempo tiene unas condiciones de curvatura mayores que las observadas un ningún otro lugar
del universo. En este trabajo se estudian las singularidades que aparecen en los agujeros negros y
en un universo en expansión, y se demuestran los teoremas de singularidad. Para ello, se discuten
primero algunas propiedades que se imponen al espacio-tiempo: orientabilidad temporal, causalidad
e hiperbolicidad global. Posteriormente, se trata la ecuación de Raychaudhuri y su relación con
las condiciones de enerǵıa, que será utilizada para demostrar la existencia de singularidades. Por
último, se muestran dichas singularidades en ciertos espacio-tiempos concretos. La existencia de
singularidades, predicha por estos teoremas, supone la necesidad replantear la teoŕıa gravitacional
para explicar cómo se modifican las leyes f́ısicas alrededor de ellas.

Palabras clave: agujero negro, singularidad, incompletitud geodésica, orientación temporal,
condiciones de causalidad, dominios de dependencia, horizontes, Raychaudhuri, condiciones de
enerǵıa.

Abstract:

The theory of black holes has a huge physical importance, not just to explain these systems
that have been recently observed in Nature, but also because, inside them, spacetime attains
stronger curvature conditions than the ones observed anywhere else in Nature. In this work,
singularities appearing inside black holes and at the origin of an expanding Universe are studied
and the singularity theorems are proven. To do that, some properties that are imposed to spacetime
are discussed: time-orientability, causality and global hyperbolicity. Then, Raychaudhuri equation
is exposed and it is discussed how it is related to energy conditions. It is used to prove the existence
of singularities in some particular spacetimes. Finally, singularities are illustrated in some specific
spacetimes. The existence of singularities, predicted by these theorems, supports the need for
reconsidering the gravitational theory in order to explain how physical laws are modified near
them.

Keywords: black hole, singularity, geodesic incompleteness, time-orientability, causality condi-
tions, domains of dependence, horizons, Raychaudhuri, energy conditions.
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Introduction

Black holes are bounded regions of the spacetime in which gravity is so strong that nothing, not
even light, can escape from it. Inside them, massive and non-massive particles would eventually
reach the black hole center, which is a singularity of the spacetime. The aim of this work is
to characterise these singularities and prove the theorems that claim their existence in a world
described by General Relativity.

The first modern singularity theorem [1] was published in 1965, half a century after Einstein
field equations, which are the base of General Relativity, were proposed. These theorems were the
first important result afterwards which was not included in the original theory. They guarantee the
existence of singularities in this theory under the assumption of several hypothesis which seem to be
physically reasonable for black holes. First of all, they postulate a condition on spacetime, called
the congruence condition, which could be related to the energy conditions satisfied by baryonic
and leptonic matter and radiation. Then, they assume the existence of a trapped surface, which
could be understood as one from which light cannot escape. This is a scenario that is found inside
black holes. Finally, some theorems assume that spacetime is globally hyperbolic, which is a global
condition imposed on it that assumes the existence of a surface which is a generalisation of an
instant of time in the sense that every causal trajectory intersects it exactly once. However, this
hypothesis could be avoided when working with bounded regions of the Universe, like the one inside
a black hole.
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The existence of singularities is a huge inconvenient when one is trying to model the physical
world using the theory of General Relativity. In a singularity, spacetime disappears at some point,
in a context that light or observers would eventually reach it and, consequently, leave the spacetime.
Because classical theories should be deterministic, it is not physically reasonable that some observer
could leave the spacetime. Then, another theory, different from General Relativity, is needed to
explain how physical laws are modified near these singularities. Up to now, much research has
been made to try explain it using different quantum gravity theories, although there is no accepted
answer yet. A further discussion about that could be seen in [2].

The most known singularity takes place at the origin of the Universe in the ΛCDM cosmological
model. It is commonly called initial singularity or Big Bang. Its particularity respect to other
singularities happening inside black holes is that time is reversed. Instead of going to the singularity,
light and massive particles comes from it. Then, General Relativity cannot explain what happened
before Big Bang, not even which physical laws worked at that point.

As mentioned above, the main goal of this work is to make a complete proof of the singularity
theorems published by Penrose. Before that, we discuss the different definitions of singularities in
section 2. After that, time-orientability of a spacetime is defined in section 3, which means that
future and past could be differentiated. In the same section, we impose the physical world not to
have closed causal curves, which means that time travel is physically forbidden. In sections 4, 5 and
6, several physical and mathematical concepts are introduced, which will be necessary for proving
the singularity theorems. In section 7, we introduce the Raychaudhuri equation, which has been
sometimes considered as the first singularity theorem. It claims that every congruence of timelike
or null geodesics contained in a spacetime satisfying the above mentioned congruence conditions
would converge to a point within a finite amount of proper time, or affine parameter in case of
null geodesics. Finally, proofs of the singularity theorems related to the existence of incomplete
timelike and null geodesics are shown, respectively, in sections 8 and 9. Finally, in section 10, these
theorems are illustrated in some metrics used to model black holes and the cosmological evolution.
Along these work, natural units (c = 1) and the metric signature convention (−,+,+,+) will be
used.

1 Mathematical preliminaries

According to General Relativity, a spacetimeM is a real, 4-dimensional, connected, Hausdorff dif-
ferential manifold, in which a Lorentzian metric is defined. 1 Therefore, topological and geometrical
techniques are needed for working with spacetime properties. Simple definitions and properties of
topological spaces are assumed to be known. Nevertheless, it is interesting to mention that every
spacetimeM has to be paracompact, which means that every open cover {Uα} ofM has a locally
finite refinement {Vβ}, what means that for every Uα, there is some Vβ such that Vβ ⊂ Uα and that
every point has an open neighbourhood intersecting only finitely many Vβ. Paracompactness of the
spacetime is a key property for proving the existence of a limit for a sequence of curves. Moreover,
some differential geometry, including the theory of geodesics, is assumed to be known too and can
be reviewed, for instance, in [3], [4], [5], [6] or [7]. However, it is interesting to mention some results
about the exponential map defined in a Riemannian or Lorentzian manifold and the existence of
simple neighbourhoods around any point.

Definition 1.1. Let M be a Riemannian or a Lorentzian manifold and let v be a tangent vector
at some point p ∈ M. The exponential map of v, denoted by exp(v), is the point γv(1), where
γv is the unique geodesic satisfying that γv(0) = p and γ′v(0) = v. Of course, this definition

1Rigorously, the spacetime should be denoted by (M, gµν), where gµν is the metric tensor defined on it. However,
when there is no risk of misunderstanding, it will be referred as M.
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applies only to tangent vectors v ∈ TpM such that γv could be defined that far. Using the inverse
function theorem, it is proven in [3] and [4] that the exponential map is smooth and defines a
diffeomorphism from an open neighbourhood of the null vector in the tangent space of p onto an
open neighbourhood of p in M. A neighbourhood of p such that the exponential map defines a
diffeomorohism onto it is called a normal neighbourhood of p.

Definition 1.2. The exponential map is defined similarly in tangent vectors which are orthogonal
to a submanifold. It can be seen in [4] that it defines a diffeomorphism onto an open neighbourhood
of the manifold.

Definition/Proposition 1.3. A simple set is a subset ofM which is a normal neighbourhood for
every one of its points. It is proven in [3] and [4] that every point has a simple neighbourhood and
that spacetime can be covered by a locally finite collection of simple sets. In particular, it implies
that any compact set can be covered by a finite number of them.

Simple and normal neighbourhoods are important for proving local properties of spacetimes
because normal coordinates could be defined on them. Being U a normal neighbourhood around
p, there is a set of coordinates (t, x, y, z) such that p is represented by (0, 0, 0, 0), gµν(p) = ηµν and
geodesics through p can be written as (t0λ, x0λ, y0λ, z0λ), where λ is an affine parameter.

The most important property of simple neighbourhoods is the following one.

Proposition 1.4. If N is a simple region, any two points p, q ∈ N̄ can be connected by a unique
geodesic inN , denoted by pq. Moreover, its length, which will be defined in section 5, is a continuous
function of its endpoints.

2 Definition of singularity

Singularities in a spacetime M could be understood as scenarios in which a General Relativity
breakdown happen. It is reasonable to think that this breakdown only happens in the theory, not
in the physical world. Then, an updated theory is needed to explain the physical behaviour at
the singularities and maybe a more advanced quantum physics could do that. Different examples
of these situations could be found in Friedmann-Lemâitre-Robertson-Walker metric (Big Bang, at
t = 0) or in Schwarzschild metric (at point r = 0). However, there is no observational evidence
from physical laws at singularities because information inside an Schwarzschild black hole cannot
leave it and temperature was so high during Big Bang that photons could not travel long distances
without interacting with other particles, so the Universe was opaque. At this point, it is interesting
to mention that we are interested in singularities which are intrinsic of the spacetime, not due to
the result of using a special coordinate system. For instance, Schwarzschild metric has a divergence
at r = rS = 2m which could be avoided using Kruskal coordinates.

However, there are some conceptual difficulties related to how one could define a singularity.
Historically, some different definitions have been used, even tough the most accepted one nowadays
is related to geodesic incompleteness. Geodesic incompleteness in a spacetime is the existence of
geodesics which are past or future inextendible but their affine parameter is only defined within
a bounded interval. Those geodesics are called incomplete. Assuming that a geodesic is future
incomplete, an observer moving along that geodesic would complete its movement in a finite amount
of proper time, while General Relativity could not explain what would happen after that, failing
to be a deterministic theory.

There has been some discussion about how correct is to restrict the definition of singular space-
times to geodesic incompleteness, instead of considering a wider variety of paths. For instance, we
can consider paths such that their total acceleration is bounded. These paths may represent travels
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made by an observer having a finite amount of ‘fuel’ for modifying its trajectory. In [8], Geroch
constructed a geodesically complete spacetime containing an incomplete causal path with bonded
acceleration, although he classified it as non-singular. Even though there is no agreement about
how to define singularities, we will understood by a singular spacetime as one that is geodesically
incomplete.

In this context, singularities are related to ‘holes’ in spacetime. A problem that arises from
this definition is that a point p ∈M could be removed artificially and every geodesic containing p
would become incomplete, so spacetime would be singular. To avoid this situation, it is necessary
to work with intextendible spacetimes, which means that spacetime is not isometric to a proper
subset of another spacetime. This notion ensures that singularities are due to a physical reason and
not related to the fact that the spacetime considered is just not big enough. A further discussion
related to the different ways one could define singular spacetimes appears in [9].

3 Orientability and causality

LetM be a Lorentzian spacetime. Then, the tangent space at every point p ∈M is isomorphic to
Minkowski space. Therefore, timelike vectors in this tangent space can be divided in two connected
components. A spacetime is called time-orientable if there exists a continuous designation about
which component is the future one as p varies overM. Provided that spacetime is time-orientable,
there are several physical processes that could differentiate future from past. One of them could
be the second law of thermodynamics, that says that future is the time direction in which the total
entropy of the Universe increases. In the following, we will assume that spacetime is time-orientable
and such future designation has been made.

Causality is related to the possibility that some point in spacetime could be influenced by
another one, meaning that there exists a causal curve joining these two points, so information
could travel from one point to the other. In this context, we understand a curve as a continuous
and piecewise smooth map γ : I → M, where I ⊂ R is an interval. It is said to be causal (resp.
timelike) if its tangent vector is causal (resp. timelike) at every point in which it is defined. Each
interval I ′ ⊂ I such that its restriction of γ is regular is called a segment. Then, causality is
established in the following definition.

Definition 3.1. The causality relations in a space-time M are defined as follows:

• p� q if there is a future directed timelike curve from p to q.

• p < q if there is a future directed causal curve from p to q.

The different future sets of a point are defined as the sets of points which can be reached by a
timelike (resp. causal) curve:

• Chronological future: I+(p) = {q ∈M : p� q}.

• Causal future: J+(p) = {q ∈M : p ≤ q}

The chronological and causal pasts, I−(p) and J−(p), are defined similarly.
Given a set S ⊂M, its chronological (resp. causal) future set is the union of the chronological

(resp. causal) futures of every point p ∈ S. Again, the chronological and causal pasts of a set S
are defined similarly.

The chronological and causal futures satisfy some interesting properties.

Proposition 3.2. I+(p) is open for every p ∈M.
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Proof. Let q ∈ I+(p) and let γ be a future directed timelike curve from p to q. Let U be a simple
neighbourhood of q and r ∈ U be a point in γ slightly before q. Then, I+(r, U) is diffeomorphic to
an open set contained in the future-pointing vectors in the tangent space at r, so I+(r, U) is open.
As q ∈ I+(r, U) ⊂ I+(p) is arbitrary, I+(p) is open.

Corollary 3.3. Given S ⊂M, I+(S) is an open subset of M.

Proposition 3.4. Given a subset S ⊂M, then I+(S) = I+(S).

Proof. Clearly, I+(S) ⊂ I+(S). Conversely, if q ∈ I+(S), then I−(q) ∩ S 6= ∅, so I−(q) ∩ S 6= ∅
because I−(q) is open by proposition 3.2. Then q ∈ I+(S).

Proposition 3.5. Given points p, q, r ∈M, if p� q and q < r, or p < q and q � r, then p� r.

Proof. First, we are proving it when p, q and r all lie in the closure of a single simple neighbourhood.
For that, define φ(x, y) := −g

(
exp−1x (y), exp−1x (y)

)
as the square of the length of the geodesic

segment xy. Clearly φ(a, x), for a fixed a, increases when x > a moves along a future-pointing
timelike curve or along a future directed causal curve whose tangent vector is not proportional to
the one of the geodesic ax. Then, this proposition is clear when all p, q, r lie on a single simple
neighbourhood. A more detailed proof of this statement could be seen in [10].

Without loss of generality, we can assume that p� q and q < r. Then, there is a timelike curve
γ from p to q and a causal curve λ from q to r. As λ, considered as its image set, is compact, it can
be covered by a finite number of simple regions N1, . . . , Nm. Set x0 = q ∈ Ni0 and let x1 be the
future endpoint of the connected component of λ∩Ni0 . Choose y1 ∈ Ni0 in the final segment of γ,
but distinct from x0. As they are contained in the closure of the simple region Ni0 , it is possible to
construct the geodesic segment y1x1, which is timelilke because of the first part of this proof. At
this point, either x1 = r or x1 6∈ Ni0 , so there exists some different i1 such that x1 ∈ Ni1 . Then,
repeating this argument a finite number of times, it is possible to construct a timelike curve form
p to r, so p� r.

Corollary 3.6. If q ∈ J+(p) \ I+(p), then there exists a null geodesic from p to q.

Proof. As q ∈ J+(p), there exists a causal curve γ from p to q. Because γ is compact, it can be
covered by finitely many normal neighbourhoods Ni1 , . . . Nir (possibly repeated) such that there
exist xi ∈ Ni ∩ Ni+1 ∩ γ. Then, xi, xi+1 ∈ Ni+1 and xixi+1 is a null geodesic because, otherwise,
proposition 3.5 would imply that q ∈ I+(p). Therefore, there is a broken null geodesic from p to q.2

However, choosing a simple neighbourhood N ′i of xi, and denoting by γ−i and γ+i the incoming and
outgoing geodesic segments, respectively, if γ−i ∪ γ

+
i is not a geodesic segment, it would be possible

to choose α ∈ γ−i ∩Ni and β ∈ γ+i ∩Ni such that αβ is a timelike geodesic (reasoning similarly to
the first part of the proof of proposition 3.5). In that case, q ∈ I+(p) due to what was commented
above. By repeating this argument a finite amount of times, we get that γ is a null geodesic.

Lemma 3.7. Given a subset S ⊂ M, then J+(S) ⊂ I+(S). The equality holds whenever J+(S)
is closed.

Proof. Only is it necessary to be proven when S = {p}. Obviously, p ∈ I+(p), so let q > p and
let γ be a future directed causal curve from p to q. Let U be a simple neighbourhood of q and
q′ ∈ U be a point in γ slightly before q. Then q ∈ J+(q′, U) = I+(q′, U) because of the properties
of simple neighbourhoods. However, I+(q′, U) ⊂ I+ (J+(p)) = I+(p), by proposition 3.5. Hence,
q ∈ I+(p).

2By a broken geodesic, we understand a curve γ in which there is a finite sequence {x1, . . . , xn} such that every
γ|[xi,xi+1] is a geodesic.
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It is technically possible for a Lorentzian manifold to admit a closed causal curve. Physically,
it is not acceptable because a particle would be able to come back to the moment it was created
and, perhaps, impede that process. In other words, time travels would be physically allowed in
this scenario, what is unacceptable. Moreover, neither is accepted the fact that a causal curve
could come arbitrarily close to intersect itself. In that case, arbitrary small perturbations of the
metric could produce a closed causal curve. Therefore, it is usually imposed the strong causality
condition on the spacetime: for every p ∈M and every neighbourhood U of p, there exists another
neighbourhood V of p, contained in U , such that no causal curve intersects V more than once.

4 Domains of dependence and horizons

In a spacetime M, there is a kind of subsets of special importance, which are defined as follows.

Definition 4.1. A subset S of a spacetime M is called achronal if every two points x, y ∈ S are
not chronologically related, which means that x 6� y and y 6� x.

It is necessary to introduce two technical definitions before defining the domains of dependence.

Definition 4.2. Let S be a closed achronal set. The edge of S consists of the points p ∈ S such
that every neighbourhood U of p contains points q1 ∈ I−(p, U) and q2 ∈ I+(p, U) and a causal
curve from q1 to q2 which does not intersect S.

Definition 4.3. Let γ : I →M be a curve in a spacetime. A point p ∈ M is said to be a future
endpoint of γ if, given any neighbourhood U of p, there exists t0 ∈ I such that γ(t) ∈ U ∀t ≥ t0.

3

A curve is future-inextendible if it has no future-endpoint. Past endpoints and past-inextendibility
are defined similarly.

Next lemma will let us to derive some properties about spacetimes which satisfy the strong
causality condition.

Lemma 4.4. Let M be a strongly causal spacetime and let K ⊂M be a compact subset. Then,
every causal curve γ confined within K must have both past and future endpoints in K.

Proof. Without loss of generality, we may assume that the curve parameter is defined in the whole
set R. Let {ti} be a sequence diverging to infinity and let pi := γ(ti). The compactness of K
implies the existence of an accumulation point p ∈ K. Hence, for every neighbourhood U of p,
infinitely many pi belong to U . If p would not be a future endpoint of γ, γ would never remain in
U , contradicting the strong causality condition at p. Similarly, γ has a past endpoint in K.

Definition 4.5. For every subset S of a spacetimeM, we define the future domain of dependence,
D+(S), as the set of points p ∈ M such that every past-inextendible causal curve containing p
intersects S.4 Similarly, the past domain of dependence, D−(S), is the set of points p ∈ M such
that every future-inextendible causal curve through p intersects S. The full domain of dependence
is defined as D(S) := D+(S) ∪ D−(S) and could be understood as the set of points p ∈ M such
that every future and past-inextendible causal curve through p intersects S.

Lemma 4.6. Given a closed achronal set S, D+(S) is the set T of points p ∈ M such that every
past-pointing inextendible timelike curve through p meets S.

3This definition is the mathematical condition for the fact that the curve cannot be defined in a strictly bigger
interval of the affine parameter. If that was the case, it would exists the above mentioned limit. Conversely, in case
that limit exists, the curve could be defined in a semi-closed interval by adding this limit and later could be extended.

4Physically, the future domain of dependence could be understood as the set of points which are completely
determined by the set S.
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Proof. On the one hand, we will see that D+(S) ⊂ T . Suppose by contradiction that there exists
p ∈ D+(S) \ T . Then, there is a past-inextendible timelike curve α starting at p which does not
meet S. Hence, p 6∈ S, so there is a causally convex neighbourhood U of p which does not intersect
S. Choosing a point r ∈ U slightly over p in the past direction of α, then I+(r, U) contains p, so it
contains some q ∈ D+(S) too. The curve obtained by juxtaposition of the geodesic segment from
q to r in U and the segment of α past r constitutes a past-inextendible timelike curve which does
not meet S, contrary to q ∈ D+(S).

On the other hand, we will show that T ⊂ D+(S). Given q 6∈ D+(S), consider M \D+(S) as a

manifold and choose r ∈ I−
(
q,M \D+(S)

)
. Then, there is a past-pointing timelike curve γ from

q to r and a past-inextendible causal λ curve starting from r which misses S. Juxtaposing them
and transforming the resulting curve in a timelike one like the proof of proposition 3.5, we get that
q 6∈ T .

Definition 4.7. A Cauchy surface Σ in a spacetime M is a closed achronal set satisfying that
D(Σ) =M.5 A spacetime M is said to be globally hyperbolic if it contains a Cauchy surface.6

Proposition 4.8. Given a Cauchy surface Σ, every inextendible causal curve γ intersects Σ, I+(Σ)
and I−(Σ).

Proof. By definition 4.7, there is a ∈ I (being I the interval in which γ is defined) such that γ(a) ∈
Σ. As γ is inextendible, it has no endpoints, so it could be extended to an open neighbourhood I ′

of a. In that case, there would be ε > 0 such that (a − ε, a + ε) ⊂ I ′. Then, γ(a + ε/2) ∈ I+(Σ)
and γ(a− ε/2) ∈ I−(Σ), assuming that γ is future directed.

We need to define some kind of limit for a sequence of curves in order to derive some properties
of globally hyperbolic spacetimes.

Definition 4.9. Let {γn} be a sequence of future directed causal curves in a spacetimeM and let
R be a convex covering ofM. A limit sequence for {γn} relative to R is a (possibly finite) sequence
{p0, p1, . . .} ⊂ M such that:

1. For each pi, there is a subsequence {γm} and numbers sm0 < sm1 < . . . < smi such that

(a) limm→∞ γm(smj ) = pj ∀j ≤ i.
(b) For every j < i, the points pj , pj+1 and the segments γm|[smj ,sm,j+1] are all contained in

a single Cj ∈ R.

2. If {pi} is infinite, it is non-convergent while, in case it is finite, it consists of more than one
point and there is no strictly longer sequence satisfying the above mentioned conditions.

Lemma 4.10. Let {γn} be a sequence of future-pointing causal curves satisfying that {γn(0)} → p
and such that there exists a neighbourhood of p containing only finitely many curves γn. Then γn
has a limit sequence starting at p relative to any convex covering R.

Proof. SinceM is paracompact, it has a locally finite subcovering R′ formed by open sets Uα such
that every Uα is compact, causally convex, satisfies the strong causality condition and is contained
in some member of R. By hypothesis, we can suppose that R′ contains some U0 such that infinitely

5A Cauchy surface is a generalization of an instant of time in Minkowski spacetime.
6Cauchy surfaces have huge importance in General Relativity, specially in the Cauchy problem. If a Cauchy

surface is a smooth hypersurface, a metric tensor defined on it could be extended uniquely to the whole spacetime.
See [6] for further discussion.
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many γn start in U0 but leave U0 eventually. Let γn(sn1) be the first point of γn in δU0. Passing
to a further subsequence, by the compactness of δU0, {γn(sn1)} converges to a point p1 ∈ δU0.

Now choose some U1 ∈ R′ containing p1. If infinitely many of the remaining γn leave U1, same
argument constructs the point p2 ∈ δU1. We repeat this argument as many times as possible,
choosing the element of R′ that has been used less times when there is more than one candidate
available. Clearly, the first condition in definition 4.9 is satisfied.

Suppose that the sequence obtained {pi} is infinite and convergent to some q ∈ M. For some
U ∈ R′ containing q, pi ∈ U for all but a finite number of them. Since U is compact andR′ is locally
finite, only finitely many members of R′ intersect U . Moreover, U could have been chosen only a
finite number of times because, when it is chosen, next point does not belong to U . However, some
member of R′ intersecting with U should have been chosen infinitely many times, by the pigeonhole
argument, and this violates the election order used.

Suppose now that the resulting sequence is finite: p0 < . . . < pk. Since the construction cannot
be continued, only finitely many of the remaining γn leave Uk. The γn trapped in Uk are extendible
by lemma 4.4, so we can suppose they are defined in an interval [0, ξm]. By compactness, a further
subsequence of γm(ξm) converges to some q ∈ Uk. If q = pk, the subsequence cannot be extended
while, if q 6= pk, the sequence p0 < . . . < pk < q is an inextendible limit sequence of {γn}.

Definition 4.11. Given a sequence of curves {γn}, joining points pi and pi+1 of a limit sequence
by the geodesic segment contained in Ci gives a broken geodesic called quasi-limit of {γn} with
vertices {pi}. If the limit sequence is infinite, then the quasi-limit is future-inextendible. This is
the case when each γn is future-inextendible.

Proposition 4.12. Every globally hyperbolic spacetimeM satisfies the strong causality condition.

Proof. For being M globally hyperbolic, it is satisfied that M = I+(Σ) ∪ Σ ∪ I−(Σ), where Σ is
a Cauchy surface. Suppose, for the sake of contradiction, that the strong causality condition is
violated at some point p ∈ M. Then, there is a sequence of curves γn defined on [0, 1] satisfying
that both {γn(0)} and {γn(1)} converge to p, but every γn leaves some fixed neighbourhood of
p. If the limit sequence given by lemma 4.10 is finite, the correspondent quasi-limit λ would be a
closed timelike curve. Extending it by going through it again infinitely many times would produce
an inextendible timelike curve which would intersect Σ more than once or would not do it at any
point, contrary to definition 4.7.

On the other hand, if the limit sequence is infinite, the corresponding quasi-limit is future inex-
tendible, so proposition 4.8 implies that it intersects I+(Σ), so some pi ∈ I+(Σ). By reparametriza-
tion, we can suppose that there exists s ∈ (0, 1) such that limm→∞ γm(s) = pi, where {γm} is a
subsequence of {γn}. Using lemma 4.10 dually, we get a past directed limit sequence for γm|[s,1]
starting at p. If it is finite, it should end at pi and then pi < p and p > pi, existing a closed causal
curve, which is the contradiction mentioned before. If it is infinite, the resulting quasi-limit is a
past-inextendible causal curve, so it must intersect I−(Σ) and then infinitely many γm|[s,1] would
do that. Since γm(s) ∈ I+(Σ) for infinitely many m and γm are future directed, it contradicts the
achronality of Σ. Therefore, the strong causality condition must be satisfied in M.

Theorem 4.13. Given any two causally related points p ≤ q in a globally hyperbolic spacetime
M, the set J(p, q) := J+(p) ∩ J−(q) is compact.

Proof. If p = q, the strong causality condition given by proposition 4.12 implies that J(p, p) = {p},
which is a compact set. Suppose, otherwise, that p < q. Because the topology of M is second
countable, given a sequence {xn} ⊂ J(p, q), we just need to show that it has an accumulation point.
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Let γn be future directed causal curves from p to q through xn. Let R be a covering of M by
convex open simple sets C such that C is compact and contained in a convex open set. Lemma 4.10
guarantees the existence of a limit sequence starting at p. If it is finite, it means that some pk = q
and any subsequence {γm} as the one in definition 4.9 satisfies, by the pigeonhole argument, that
there is an i < k such that xm ∈ γm|[smi,sm,i+1] for infinitely many m. Passing to this subsequence,
the points xm lie in a single member C of R. By the properties of simple sets like C, {xm} has an
accumulation point x ∈ C such that pi ≤ x ≤ pi+1. Hence x ∈ J(p, q).

We just need to get a contradiction when {pi} is infinite. In that case, the respective quasi-limit
would be future-inextendible, so it would intersect I+(Σ). Reparametrizing, there is a subsequence
{γm} and s ∈ (0, 1) such that γm(s) converges to a vertex pi ∈ I+(Σ). Since pi 6= q, dual of
lemma 4.10 gives a past-directed limit sequence {qi} for the curves γm|[s,1]. If {qi} were finite, then
{p0, p1, . . . , pi, . . . , q1, q} is a finite limit sequence of {γn}, so the preceding case works. Otherwise,
when {qi} is infinite, the new quasi-limit λ is a past inextendible causal curve, so it reaches I−(Σ).
Thus, some γm|[s,1] does it. As γm(s) ∈ I+(Σ), this fact contradicts the achronality of Σ.

Now we turn our attention into the boundary of this region, which will be a key concept for
proving the singularity theorems.

Definition 4.14. The future Cauchy horizon of an achronal closed set S is defined as

H+(S) =
{
x ∈ D+(S) : D+(S) ∩ I+(x) = ∅

}
= D+(S) \ I−

(
D+(S)

)
= D+(S) \ I−

(
D+(S)

)
Similarly, the past Cauchy horizon is defined and the total Cauchy horizon is H(S) = H+(S) ∪
H−(S).

Lemma 4.15. If S is a closed achronal set, then δD+(S) = S ∪H+(S).

Proof. By the achronality of S, we have the inclusion S ∪H+(S) ⊂ δD+(S). Conversely, suppose
there is some p ∈ δD+(S) \ (S ∪H+(S)), then p ∈ D+(S) \ S and, by lemma 4.6, p ∈ I+(S).
Furthermore, p ∈ D+(S) \H+(S), so there exists q ∈ I+(p) ∩D+(S). Thus, I+(S) ∩ I−(q) is an
open neighbourhood of p which is contained in D+(S) for being S achronal. This fact contradicts
that p ∈ δD+(S).

Theorem 4.16. Given an achronal set S, every point p ∈ H+(S) lies on a null geodesic γ contained
entirely within H+(S) which is either past inextendible or has a past endpoint on edge(S).

Proof. Let p ∈ H+(S) \ edge(S). Then either p ∈ I+(S) or p ∈ S due to lemma 4.6.
In the first case, since p 6∈ I−(D+(S)) because of definition 4.14, there is a past directed

inextendible timelike curve starting from every q ∈ I+(p) which does not intersect S. Let {qn} ⊂
I+(p) be a sequence converging to p and {γn} its corresponding sequence of curves. Then, by lemma
4.10 and definition 4.11, there is an inextendible quasi-limit γ through p which does not enter the
open set I+(S) ∩ I− (D+(S)) ⊂ D+(S) because no γn does that. Since I−(p) ⊂ I−(D+(S)) =
I−(D+(S)), γ is a past directed causal curve which does not enter I−(p)∩ I+(S), so γ ∩ I+(S) has
to be a null geodesic. Moreover, γ∩I+(S) ⊂ D+(S) because, otherwise, proposition 3.5 and lemma
4.6 would construct a past-inextendible timelike curve which skips S, contradicting this lemma 4.6.
Thus, γ ∩ I+(S) ⊂ H+(S), so there is a past-pointing null geodesic segment contained in H+(S).

In the second case, p ∈ S \ edge(S), so there exists a neighbourhood U of p such that no causal
curve starting from a point q ∈ I+(p) ∩ U can intersect I−(p) ∩ U without meeting S. A similar
argument gives the existence of a past-pointing geodesic through p, which will be a null geodesic
at p because the quasi-limit γ will not intersect I−(p) ∩ U . Furthermore, γ ∩ U will not intersect
I−(S) because no γn do that, so it will remain in S. Similarly, it will not intersect I−(D+(S))
either, so it will remain in H+(S)
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In both cases, if a past-pointing null geodesic γ leaves H+(S), the segment contained in the
horizon has a past endpoint r ∈ H+(S) because H+(S) is closed. If r 6∈ edge(S), there would
be another geodesic segment γ′ starting from r and contained in H+(S). Furthermore, by the
definition of r, γ′ cannot be the continuation of γ, so there is a timelike curve from a point in γ to
a point in γ′, violating the achronality of H+(S).

5 Time separation

Definition 5.1. Let γ : [a, b]→M be a piecewise regular causal curve. Its length is defined as:

L(γ) =

∫ b

a

√
−γ̇µ(t)γ̇µ(t) dt

Definition 5.2. For every p, q ∈M, their time separation is defined as

τ(p, q) = sup {L(γ) : γ is a timelike curve from p to q}

where τ(p, q) :=∞ if the set of legths is unbouded and τ(p, q) := 0 if it is empty.

Proposition 5.3. Let N ⊂ M be a simple region and let p, q ∈ N such that pq is future causal.
Then L(pq) = τN (p, q). 7

Proof. If pq is null, q ∈ J+(p) \ I+(p), so the result is clear. Otherwise, choose Minkowski normal
coordinates with origin at some point r ∈ I−(p) lying along the past extension of pq and define, in
an open neighbourhood of pq, a new set of coordinates given by

T =
√
t2 − x2 − y2 − z2, X1 = x

t , X2 = y
t , X3 = z

t

This metric takes the form ds2 = −dT 2 + habX
aXb, where hab is a positive definite 3 dimensional

metric. In this metric, curves (X1, X2, X3) = (k1, k2, k3) are geodesics. Let α be another curve
from p to q. Then

L(α) =

∫ Tq

Tp

√
1− hab

dXa

dT

dXb

dT
dT

from which it is clear that the maximum takes place whenever X1, X2 and X3 are constant. That
means that geodesics locally maximize proper length.

Lemma 5.4. The time separation function τ : M ×M → [0,∞] : (p, q) 7→ τ(p, q) is lower
semicontinuous.

Proof. Let p, q ∈ M . Then, for every δ > 0, we must find neighbourhoods U and V of p and q,
respectively, such that τ(p′, q′) > τ(p, q)− δ for every p′ ∈ U and q′ ∈ V .

If τ(p, q) = 0, there is nothing to prove. Otherwise, there is a timelike curve α from p to q
such that L(α) > τ(p, q) − δ/3. Let N be a simple region of q and let q1 be a point of α in N .
If q1q is the geodesic segment in N from q1 to q, its length depends continuously on its endpoints
due to proposition 1.4. Therefore, there exists a neighbourhood V of q such that for every q′ ∈ V ,
L(q1q

′) > L(q1q)− δ/3 ≥ L(α|[q1,q])− δ/3, where the last inequality comes from proposition 5.3.
Same construction gives a neighbourhood U around p such that every p′ ∈ U and every q′ ∈ V

can be joined in an obvious way by a causal curve β satisfying that

L(β) > L(α)− 2δ/3 > τ(p, q)− δ ⇒ τ(p′, q′) > τ(p, q)− δ

7Here, the subindex remarks that N is being considered as whole spacetime, so paths eventually leaving N are
not taken into consideration.
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Lemma 5.5. Suppose that the strong causality condition holds on a compact subset K. Let {γn}
be a sequence of future-pointing geodesic segments in K such that γn(0) → p and γn(1) → q 6= p.
Then, there is a future-pointing causal broken geodesic γ from p to q and a subsequence {γm} such
that limm→∞ L(γm) ≤ L(γ).

Proof. Consider the limit sequence given by lemma 4.10. If it is infinite, the quasi-limit would be
an inextendible timelike curve, so lemma 4.4 implies that it would eventually leave K, but no γn
does it. Then, the limit sequence is finite, so quasi-limit is a broken geodesic from p to q. By the
local length maximality in geodesics given by proposition 5.3, L(γm|[sm,i,sm,i+1]) ≤ L(pipi+1) and,
joining them, we get the desired inequality.

Proposition 5.6. If M is a globally hyperbolic spacetime, the time separation function τ is
continuous in M×M

Proof. By lemma 5.4, τ is lower semicontinuous. If it was not upper semicontinuous at (p, q) ∈M×
M, there would exist δ > 0 and sequences {pn} → p and {qn} → q such that τ(pn, qn) > τ(p, q) + δ
for every n ∈ N. By proposition 3.2, there exists some p− � p and q+ � q such that pn ∈ I+(p−)
and qn ∈ I−(q+) for infinitely many n.

Since τ(pn, qn) > 0, there exists a timelike curve αn from pn to qn such that L(αn) > τ(pn, qn)−
1
n . According to theorem 4.13, J(p−, q+) is compact so, by the preceding lemma, there exists a
broken geodesic, γ, from p to q and a subsequence {αm} of {αn} such that limm→∞ L(αm) ≤ L(γ).
Therefore,

τ(p, q) ≥ L(γ) ≥ lim
m→∞

L(αm) ≥ lim
m→∞

(
τ(pm, qm)− 1

m

)
≥ τ(p, q) + δ

This contradiction proves that τ(p, q) is continuous when M is globally hyperbolic.

6 Conjugate and focal points

Definition 6.1. Let γ be a geodesic in a manifoldM whose tangent is ξa. A vector field ηa along
γ is called a Jacobi field if it satisfies the Jacobi equation

ξa∇a(ξb∇bηc) = −R c
abd η

bξaξd

Jacobi fields are interesting because they generate a one-parameter variation whose longitudinal
curves are geodesics (see [3] for further discussion).

Definition 6.2. If there is a geodesic γ joining p, q ∈ M, p is said to be conjugate to q along γ if
there is a non-zero Jacobi field vanishing at p and q.

Proposition 6.3. Let γ be a causal curve joining two points p, q ∈ M. If γ maximizes proper
length between p and q, then it is is a geodesic with no interior conjugate points of p.

Proof. Clearly γ has no loops. Then, given any point r in γ, let N be a simple neighbourhood of
r. Given points a and b lying on the two connected components of (γ ∩N) \ {r}, the segment of γ
between a and b must be a geodesic because, otherwise, proposition 5.3 would construct a longer
curve. As being a geodesic is a local property, γ must be a geodesic itself.

A rigorous proof of the fact that geodesic with interior conjugate points do not minimize proper
length could be seen in [4]. However, an intuitive argument follows from the fact that there is a
one-parameter variation of geodesics such that all of them contain both p and its conjugate point,
c. If γ was a minimizing geodesic from p to q, it would be possible to construct broken geodesic of
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the same length that went from p to its conjugate point along another geodesic in that variation
different from γ and from c to q by the segment of γ. This new geodesic could not be maximal
because it would fail to be a geodesic at c, contrary to the first part of this proof.

Definition 6.4. Given a submanifold Σ of a spacetime M, a point p along a geodesic γ which
intersects Σ orthogonally is called a focal point if there is a Jacobi field along γ that vanishes at p
and generates a family of geodesics that intersect Σ orthogonally.

Lemma 6.5. Let M be a globally hyperbolic spacetime and let p, q ∈ M be such that p < q.
Then, there is a causal geodesic γ from p to q such that L(γ) = τ(p, q).

Proof. By definition 5.2, there is a sequence {γn} of causal curves from p to q whose lengths
converge to τ(p, q). Then, by theorem 4.13 and lemma 5.5, there is a broken geodesic γ such that
L(γ) = τ(p, q). Because γ is a maximal curve, proposition 6.3 implies that γ is a geodesic.

Lemma 6.6. Let S be an achronal set. If p ∈ int(D(S)) \ I−(S), then K := J−(p) ∩ D+(S) is
compact.

Proof. If p ∈ S, then K = {p}, so it is compact. Otherwise, p ∈ int(D(S)) ∩ I+(S). Then let
{xn} be a sequence in J−(p) ∩D+(S) and let γn ⊂ J−(p) ∩D+(S) be past-pointing causal curves
from p to xn. If p is an accumulation point of {xn}, there is nothing to prove. Otherwise, lemma
4.10 guarantees that there is a limit sequence {pi} starting at p. If it is infinite, the corresponding
quasi-limit given in definition 4.11 is inextendible, so it intersects I−(S), which is imposible because
no γn does that. If {pi} is finite, there is a subsequence {xm} converging to some x ∈ J−(p). If
x 6∈ D+(S), then x ∈ I−(S), so there is xN ∈ I−(S), what contradicts the achronality of S.

Theorem 6.7. Let S be a closed, achronal, edgeless, spacelike hypersurface in M. Given q ∈
int (D+(S)), there is a future-pointing causal geodesic γ from S to q whose length is τ(S, q).
Hence, γ is normal to S and has no focal points between S and q.

Proof. Considering int(D(S)) as a whole spacetime, S is a Cauchy surface, so int(D(S)) is globally
hyperbolic. By lemma 6.6, J−(q)∩D+(S) is compact, so J−(q)∩S is also compact because S was
closed. By lemma 5.6, τ(x, q) is continuous, so it takes a maximum in the compact set J−(q) ∩ S.
Hence, there exists p ∈ S such that τ(p, q) = τ(S, q). Furthermore, lemma 6.5 implies the existence
of a geodesic γ from p to q such that L(γ) = τ(p, q) = τ(S, q), which will be normal to S and will
have no focal points before q.

Theorem 6.8. LetM be a globally hyperbolic spacetime and let S ⊂M be an achronal spacelike
surface. Then, every point q ∈ E+(S) := J+(S) \ I+(S) lies on a future-pointing null geodesic
orthogonal to S with no focal points between S and q.

Proof. If q ∈ E+(S), then q ∈ J+(p) \ I+(p) for some p ∈ S. By corollary 3.6, q lies on a null
geodesic from p to q. If this geodesic γ was not orthogonal to S or if it had a focal point before
q, γ would not maximize proper length from S to q, so there will be a timelike curve from S to q,
contrary to the fact that q 6∈ I+(S).

7 Raychaudhuri equation and energy conditions

7.1 Timelike geodesics

For deriving the Raychaudhuri equation, we start from the definition of the Riemann curvature
tensor

(∇µ∇ν −∇ν∇µ)uα = Rαβµνu
β
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Then, contracting α with µ and multiplying by uν , we get

uν∇µ∇νuµ − uν∇ν∇µuµ = Rβνu
βuν

where Rβν is the Ricci tensor. Using Leibniz rule for the covariant derivative,

uν∇ν∇µuµ +∇µuν∇νuµ −∇µ (uν∇νuµ) +Rβνu
βuν = 0 (1)

Let’s now suppose that uµ represents an affinely parametrised timelike geodesic vector field
normal to a spacelike hypersurface, which means that uν∇νuµ = 0. Therefore, the third term in
the preceding equation vanishes. Defining the spatial metric as hµν := gµν+uµuν and the expansion
θ, shear σµν and twist ωµν as follows:

θ := hµν∇νuµ

σµν := ∇(µuν) −
1

3
θhµν

ωµν := ∇[νuµ]

Then, Raychaudhuri equation 1 reads

uρ∇ρθ =
dθ

dτ
= −1

3
θ2 − σµνσµν + ωµνω

µν −Rµνuµuν

Parametrising geodesics by their proper time, uµ = ∇µτ , so twist ωµν vanishes. On the other
hand, σµνσ

µν is clearly non-negative because it is a ‘purely spatial’ tensor. Then, if the congruence
condition Rµνu

µuν ≥ 0 holds for every timelike vector, we get the folllowing inequality:

dθ

dτ
+

1

3
θ2 ≤ 0⇒ dθ−1

dτ
≥ 1

3
⇒ θ−1(τ) ≥ θ−10 +

1

3
τ

where θ0 is the initial value of the expansion. If θ0 is negative, the preceding equation affirms that
θ reach value −∞ within a proper time less than 3/|θ0|. Next proposition follows from this fact.

Proposition 7.1. LetM be an orientable spacetime satisfying that Rαβξ
αξβ ≥ 0 for every timelike

vector field ξα. If Σ is a spacelike hypersurface such that θ(p) < 0 at some point p ∈ Σ. Then,
within proper time τ ≤ 3/|θ(p)| along the future-pointing geodesic γ orthogonal to Σ at p, there is
a focal point of Σ, provided that γ could be extended that far.

7.2 Null geodesics

We are interested in finding a Raychaudhuri equation for null geodesics too. However, the main
problem arises from the fact that every null vector belongs to its orthogonal space. Thus, every
hypersurface orthogonal to a null geodesic has to contain it. Then, we will work with 2-dimensional
spacelike surfaces orthogonal to a null geodesic γ. Let Σ be one of these surfaces. At each point
p ∈ Σ, there are two future-pointing null tangent vectors orthogonal to Σ and, locally, it is possible
to make a continuous designation of one of them.8 Then, we have a set of null geodesics going
”inwards” and another one going ”outwards”.9

By properties of the normal exponential map (see [4]) these sets of null geodesics describe
locally tangent fields kµ+ and kµ−. Nevertheless, there is no natural way of parametrising null
geodesics because proper time cannot be defined. We will do that parametrization in an arbitrary

8Globally, it may not be possible to make such designation. This is the case of a Möbius strip.
9In analogy with the behaviour of null geodesics in a spherically symmetric metric.

14



way and just imposing next two conditions: the tangent field generated kµ± is smooth and there are
scalar functions u± such that kµ± = ∇µu±. Again, we use the metric hµν = gµν + TµNν + TνNµ,
where T and N are two parallel transported null vectors orthogonal to Σ and normalised such that
NµT

µ = −1. Again, expansion θ, shear σµν and twist ωµν are defined as follows:

θ := hµν∇νuµ

σµν := ∇(µuν) −
1

2
θhµν

ωµν := ∇[νuµ]

Raychaudhuri equation 1 is

kρ±∇ρθ± =
dθ±
dτ

= −1

2
θ2± − σµνσµν + ωµνω

µν −Rµνkµkν

Again, twist ωµν vanishes because parametrisation has been chosen for the normal bundles
kµ± being surface orthogonal and σµνσ

µν is clearly non-negative since hµν is positive definite. If
Rαβk

αkβ ≥ 0 for every null vector kµ, we get

dθ

dτ
+

1

2
θ2 ≤ 0⇒ dθ−1

dτ
≥ 1

2
⇒ θ−1(τ) ≥ θ−10 +

1

2
τ

If the initial value of the expansion θ0 is negative, the null geodesic expansion reach value −∞
within the affine parameter interval [0, 2/|θ0|]. This fact is the reason why next proposition is true.

Proposition 7.2. Let M be a spacetime satisfying that Rαβξ
αξβ ≥ 0 for every null vector field

ξα. Let S be a surface satisfying that the outgoing (resp. ingoing) expansion θ+ (resp. θ−) takes
the negative value θ0 at some point q ∈ S. Then, there is a focal point to S along the outgoing
(resp. ingoing) null geodesic starting from q, within the affine parameter interval [0, 2/|θ0|].

7.3 Energy conditions

Condition Rαβξ
αξβ ≥ 0 appearing in Raychaudhuri equation could be related to the stress tensor

Tαβ using Einstein equations. These equations could be written as 10

Rµν −
1

2
Rgµν = 8πGTµν

Comparing traces of both sides, we get that −R = 8πGT , where T is the trace of the stress
tensor. Then, we get that

Rµν = 8πGTµν +
1

2
Rgµν = 8πG

(
Tµν −

1

2
Tgµν

)
If we evaluate this equality in a vector field ξµ which represents an affinely parametrised con-

gruence of null geodesics, we get that

Rµνξ
µξν = 8πGTµνξ

µξν

Then, Raychaudhuri condition Rµνξ
µξν ≥ 0 could be written as

Tµνξ
µξν ≥ 0 (2)

10Provided that there is no cosmological constant.
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which is usually denoted by the weak energy condition. 11

On the other hand, when ξµ represents a congruence of timelike geodesics parametrized by their
proper time, Einstein equations could be written as

Rµνξ
µξν = 8πG

(
Tµνξ

µξν +
1

2
T

)
so the congruence condition Rµνξ

µξν ≥ 0 becomes

Tµνξ
µξν ≥ −1

2
T (3)

which is commonly called as the strong energy condition.12

It is interesting to understand what do these energy conditions mean to physically reasonable
matter. For instance, consider an anisotropic fluid whose stress tensor is

Tµν = ρtµtν + p1xµxν + p2yµyν + p3zµzν

where {tµ, xµ, yµ, zµ} is an orthonormal basis, such that tµ is timelike. In this situation, ρ could be
understood as the rest energy density of matter and p1, p2 and p3 are called principal pressures.13

In this case, the weak energy condition is equivalent to

ρ ≥ 0 & ρ+ pi ≥ 0 ∀i = 1, 2, 3.

while the strong energy condition is equivalent to

ρ+ p1 + p2 + p3 ≥ 0 & ρ+ pi ≥ 0 ∀i = 1, 2, 3.

Therefore, both weak and strong energy conditions are satisfied provided that ρ ≥ 0 and there
do not exist negative pressures. Thus, it is believed that all physically reasonable matter satisfy
both conditions. However, dark energy, which could be responsible for the accelerated expansion
of the Universe, may not satisfy the strong energy condition.

8 Singularity theorems for timelike geodesics

There are two main singularity theorems related to timelike geodesics. First theorem assumes more
but proves more too.

Theorem 8.1. If a spacetime M satisfies that

1. Rµνu
µuν ≥ 0 for every timelike vector uµ.

2. M contains a spacelike Cauchy hypersurface Σ with future expansion θ(p) ≤ θ0 ≤ 0 ∀p ∈ Σ.

Then every future-pointing timelike curve starting from Σ has length at most 3/|θ0|.

Proof. If q ∈ I+(Σ) = D+(Σ) \ Σ, by theorem 6.7 there is a timelike geodesic γ such than L(γ) =
τ(S, q). Therefore, γ is a geodesic with no focal points along it between Σ and q and orthogonal
to Σ at some p. However, proposition 7.1 asserts that there is a focal point along γ if its length
is greater than 3/|θ(p)| ≤ 3/|θ0|. Consequently, the distance to Σ from every point in I+(Σ) is at
most 3/|θ0|. By definition 5.2, every future-pointing timelike curve starting from S has length less
than 3/|θ0|.

11Although we are describing them for null vectors, a spacetime is said to satisfy the energy conditions only if the
inequality is true for every causal vector.

12There is no mathematical implication between weak and strong energy conditions. Names are just related to the
fact that it appears physically more reasonable to assume the weak energy condition than the strong one.

13In particular, an anisotropic fluid is a perfect fluid whenever p1 = p2 = p3.
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However, being globally hyperbolic seems to be a strong condition which could be false in
general spacetimes. For instance, in an everywhere expanding Universe, it may seem physically
more reasonable to think it must fail to be globally hyperbolic instead of being singular. To avoid
the global hyperbolicity assumption, the main price to pay is that the trapped hypersurface must
be compact, so we are working with closed universes or with bounded regions of them, like black
holes.

Theorem 8.2. If a strongly causal spacetime M satisfies that

1. Rµνu
µuν ≥ 0 for every timelike vector uµ.

2. M contains a compact, edgeless, achronal, smooth spacelike hypersurface S with future
convergence θ(p) ≤ θ0 ≤ 0.

Then, there is at least one future inextendible future directed timelike geodesic starting in S whose
length is no greater than 3/|θ0|.

Proof. Suppose, for the sake of contradiction, that every future-pointing inextendible timelike
geodesic has length greater than 3/|θ0|. Since the open set int (D(S)) ⊂ M, considered as a
whole spacetime, satisfies the hypothesis of theorem 8.1, then every geodesic from S must leave
int (D(S)) and lemma 4.15 implies that it intersects H+(S) before its length becomes greater than
3/|θ0|. In particular, H+(S) 6= ∅.

In the normal bundle of S, consider the set B formed by all zero vectors and all future-pointing
causal vectors v satisfying that −||v|| ≤ 3/|θ0|. Clearly, B is compact, since S is compact too.
If q ∈ H+(S), then lemma 4.15 implies that there exists a sequence {qn} ⊂ D+(S) converging
to q. For each qn, theorem 6.7 guarantees the existence of νn ∈ B such that exp(νn) = qn. By
the compactness of B, a subsequence of {νn} converges to some ν ∈ B. Since, by construction,
−||νn|| = τ(S, qn) and, by proposition 5.4, τ is lower continuous, so −||ν|| ≥ τ(S, q). Since we are
supposing that every inextendible geodesic has length greater than 3/|θ0| ≥ −||v||, the geodesic γν ,
whose starting point is p and initial tangent vector is ν, is defined in [0, 1], so q = exp(ν), which
means that τ(S, q) ≥ −||ν||. Hence, H+(S) ⊂ exp(B).

By the assumption made about the lengths of the geodesics, the normal exponential map is
defined on the whole B, so H+(S) is compact since it is closed and contained in the continuous
image of B. However, since edge(S) = ∅, theorem 4.16 implies the existence of a future inextendible
null geodesic lying entirely in H+(S). Since M is strongly causal, this fact contradicts lemma 4.4.
This contradiction proves the existence of a future directed inextendible geodesic whose length is
less than 3/|θ0|.

9 Singularity theorems for null geodesics

These singularity theorems are related to the existence of incomplete null geodesics. They are
commonly used in a context related to gravitational collapse and black holes. When working with
null geodesics, the main problem that arises is they cannot be orthogonal to spacelike hypesurfaces.
In fact, if a null geodesic is orthogonal to a spacelike submanifold, its codimension has to be greater
or equal than 2.

Definition 9.1. A spacelike surface S of a spacetime M is said to be future-converging if both of
its families of normal null geodesics have negative future expansion.

Definition 9.2. A closed achronal set S is called future-trapped provided that E+(S) := J+(S) \
I+(S) is compact.
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Theorem 9.3. If a space-time M satisfies that:

1. Rµνu
µuν ≥ 0 for every null vector uµ.

2. M contains a non-compact, connected Cauchy hypersurface Σ.

3. M contains a compact surface S whose future expansion satisfies that θ±(p) ≤ θ0 ≤ 0 ∀p ∈ S.

Then M is future null incomplete.

Proof. Let’s suppose, for the sake of contradiction, that M is future null complete.
Globally, it may not be possible to construct a normal null vector field of S that does not

vanish anywhere. However, locally are there two linearly independent, orthogonal, null vectors
at any point p ∈ S. These null normal vectors S̃ constitute a double covering of S. Hence S̃ is
compact.

By proposition 7.2 and theorem 6.8, E+(S) ⊂ exp(K), where K = {αv : v ∈ S̃, α ∈ [0, 2/|θ0|]}.
Since S̃ is compact, K is compact and so it is exp(K). Then, given a sequence {qn} ⊂ E+(S),
it has an accumulation point q ∈ exp(K) ⊂ J+(S). Nevertheless, q 6∈ I+(S) since no qn does, so
q ∈ E+(S). Thus E+(S) is compact, so S is future-trapped.

Because M is time-orientable, it is posible to find a smooth timelike vector field ξµ (see [6] for
further discussion). Since E+(S) is clearly achronal, every integral curve can intersect E+(S) at
most once, while it intersects Σ exactly once, because of the definition of Cauchy surface. Then,
the integral curves define a one-to-one map ψ : E+(S)→ Σ where f(p) is given by the unique point
in Σ which is in the same integral curve than p. It is proven in [4] that ψ is continuous. By the
invariance of domain theorem (see [11]), ψ(E+(S)) is an open subset or Σ. Furthermore, ψ(E+(S))
is compact, so it is closed in Σ. As Σ is connected, ψ (E+(S)) = Σ, which contradicts the fact that
Σ was non-compact. This contradiction proves that our assumption was wrong, soM is future null
incomplete. In particular, there exists a future-inextendible null geodesic starting from S whose
length is less than 2/|θ0|.

Again, global hyperbolicity is an unwanted hypothesis. Nevertheless, it can be eliminated by
adding further assumptions. Then, we expose next theorem whose proof can be seen in [5].

Theorem 9.4. If a spacetime M satisfies that:

1. Rµνu
µuν ≥ 0 for every null vector uµ.

2. Each timelike or null geodesic γ has a point such that u[ρRα]βλ[µuσ]u
βuλ 6= 0.

3. There exists no closed causal curve.

4. At least one of the following properties hold:

(a) M contains a compact achronal set without edge.

(b) M contains a future-trapped surface.

(c) There is a point p ∈ M such that the expansion of the future directed null geodesics
emanating from p becomes negative along each geodesic in the congruence.

Then, M contains at least one incomplete timelike or null geodesic.

Second hypothesis, which is called generic condition, means that the tidal force felt by causal
geodesics will not be everywhere aligned with their tangent vector. It is assumed to avoid patho-
logical spacetimes.
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10 Singularities in some spacetimes

10.1 Singularity theorems in Friedmann-Lemâitre-Robertson-Walker metric

Friedmann-Lemâitre-Robertson-Walker metric model the evolution of the Universe and its line
element could be written as

ds2 = −dt2 + a2(t)

(
dr2

1− kr2
+ r2

(
dθ2 + sin2 θdφ2

))
where k is a real parameter which represents the curvature of the spatial sections and a(t) is a
function, called scale factor, which takes only positive values and whose derivative determines if
the Universe is expanding or contracting.

If the Universe is dominated by matter or radiation, the stress tensor takes the form Tµν =
(ρ+ p)uµuν + pgµν , where ρ is the density of energy and p is the pressure. In case that matter
is dominating, p = 0, while p = ρ

3 when the Universe is dominated by radiation. Therefore, both
weak and strong energy conditions are satisfied whenever the Universe is dominated by matter or
radiation.

In this case, the hypersurface specified by t = t0 is a Cauchy surface whose past expansion is
θ = −3 ȧa = −3H, where H is the Hubble parameter. If the Universe is expanding, then H > 0 and
theorem 8.1 implies that there is a past singularity, commonly called Big-Bang. In particular, it
establishes a bound about the age of the Universe: t ≤ H−1.

However, observational advances have discovered that the Universe expansion may be ruled by
the presence of dark energy, which might have negative pressures and may not satisfy the strong
energy condition. Then, singularity theorems could not be used, so the Big Bang could be avoided.
Nevertheless, there are other experimental evidences that confirm the existence of a Big Bang, like
microwave cosmic background observations.

10.2 Singularity theorems in Schwarzschild metric

Schwarzschild spacetime is the only metric modelling an empty spherically symmetric spacetime.
In particular, it could describe a non-rotating black hole. Its line element could be written as

ds2 = −
(

1− 2m

r

)
dt2 +

(
1− 2m

r

)−1
dr2 + r2

(
dθ2 + sin2 θdφ2

)
where m is a real parameter which represents the black hole mass.

There is a problem when we reach the Schwarzschild radius r = 2m from infinity. Beyond this
point, radial coordinate becomes timelike while time coordinate becomes spacelike. Therefore, we
cannot define a continuous designation about which time direction is the future one, so spacetime
is not time-orientable. This fact, combined with coordinate r blowing up at Schwarzschild radius,
makes it difficult to work with this set of coordinates

Instead of that, we will use Kruskal coordinates for expanding this metric inside Schwarzschild
radius. Using the change of coordinates given by

T =
1

2
exp

(
1

4m

(
r + 2m ln

( r

2m
− 1
)

+ t
))
− 1

2
exp

(
1

4m

(
r + 2m ln

( r

2m
− 1
)
− t
))

X =
1

2
exp

(
1

4m

(
r + 2m ln

( r

2m
− 1
)

+ t
))

+
1

2
exp

(
1

4m

(
r + 2m ln

( r

2m
− 1
)
− t
))

the metric becomes

ds2 =
32m3e−r/2m

r
(−dT 2 + dX2) + r2

(
dθ2 + sin2 θdφ2

)
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where r(T,X) is the inverse coordinate transformation, given by the equation( r

2m
− 1
)
er/2m = X2 − T 2

.
In this transformation, the external region outside the Schwarzschild black hole, r > 2m,

transforms isometrically to A1 = {(T,X) ∈ R2 : X2 > T 2, X > 0} and does the same to A2 =
{(T,X) ∈ R2 : X2 > T 2, X < 0}. The internal area maps isometrically to B1 = {(T,X) ∈ R2 : 0 ≤
T 2 −X2 ≤ 1, T > 0} and to B2 = {(T,X) ∈ R2 : 0 ≤ T 2 −X2 ≤ 1, T < 0}. 14

Without loss of generality, we can suppose that the part of the Universe outside the black hole
is identified with A1. Then, the extension of the metric could be made by adding B1 or B2.

15 In
the first case, we have a black hole, where no causal future-pointing geodesic can leave it, while the
second case is a white hole and no causal future directed geodesic can enter in it. As white holes
have not been observed in Nature yet, we will just consider the black hole extension.

Kruskal extension is conformal to Minkowski metric, so future timelike vectors are the same in
both spacetimes. Then, it is easily seen in figure 1 that every causal future directed path starting
inside Schwarzschild radius, in the black hole extension, will eventually reach the singularity r = 0.

r=2m

r=2m

r=0

r=0

r=3m

r=3m

r=4m

r=4m

r=5m

-4 -2 2 4
X

-4

-2

2

4

6
T

Figure 1: Graphical representation of Kruskal extension for Schwarzschild black hole. Singularity
inside the black hole is coloured in black and the one inside white hole is coloured in yellow.

We can check that this spacetime verifies the hypothesis of theorem 9.3. First of all, Ricci tensor
vanishes, so the congruence condition is verified trivially. Moreover, this spacetime is globally
hyperbolic, as {T = 0} is clearly a Cauchy surface.16 Finally, considering spheres whose radius
are less than Schwarzschild one, they are represented in Kruskal extension by fixing T and X.
Then, orthogonal future-pointing null vectors are (1,±1, 0, 0). Then, future expansion is θ± =
4m
r2
e−r/2m(r−2m)(T ∓X) < 0. Then, the spheres inside black holes are future-converging surfaces.
We knew that no null geodesic could leave the black hole and all of them would eventually reach

the singularity, but now theorem 9.3 asserts that al least one of them reaches the singularity within
a finite amount of proper time, so spacetime is singular.

14In Schwarzschild metric, no causal path could cross Schwarzschild radius without spending an infinite amount
of time. Nevertheless, time is just a coordinate whose only physical meaning is the time measured by an observer
placed at infinity. However, geodesics approaching to Schwarzschild radius could reach it in a finite amount of proper
time (although t becomes infinity) and then they will continue their travel inside the black hole.

15Note that one is equivalent to the other but interchanging future and past.
16We can consider the whole extension to R2, i.e. the Universe is duplicated. Nevertheless, it is not an inconvenient

as geodesics neither can leave the black hole nor intersects both copies of the Universe.
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11 Concluding statement

The existence of singularities is the main theoretical limitation to General Relativity on its purpose
of explaining the physical world. In this work, we have proven that there are incomplete geodesics
in globally hyperbolic spacetimes containing trapped surfaces and satisfying the congruence condi-
tions. This the case of an expanding Universe modelled by Friedmann-Lemâitre-Robertson-Walker
metric and a non-rotating black hole.

The strength of the singularity theorems comes from the fact that they do not need to assume
any kind of symmetry for proving that the spacetime is singular. Therefore, a hypothetical breaking
in the spherical symmetry of a gravitational collapse that forms a black hole could not avoid the
existence of a singularity.

There are two alternatives to afford the problem that arises from the existence of singularities
predicted by these theorems. On the one hand, the main proposal is to try to find solutions for
the Einstein field equations that avoid some assumptions of the theorems and, consequently, the
existence of singularities. For instance, it is possible to avoid the congruence condition including
a cosmological constant in our theory or one may try to find non-globally hyperbolic solutions to
Einstein equations. On the other hand, existence of singularities could be assumed and one could
try to analyse how will physical laws are modified in this context. Nowadays, an undiscovered
quantum gravity theory seems to be the most the promising approach.
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